Аннотация
Колистин, относящийся к классу полимиксинов, является так называемым антибиотиком последнего резерва и используется в борьбе с заболеваниями, вызванными бактериальными патогенами с множественной лекарственной устойчивостью. Стремительное распространение резистентности к полимиксинам, опосредованной локализованным на плазмидной ДНК геном mcr, может представлять высокую эпидемиологическую опасность. Для эффективного контроля за распространением генов группы mcr необходимо создание высокоточных, высокочувствительных и простых в применении тест-систем. В данном обзоре рассматриваются наиболее актуальные исследования в области молекулярной эпидемиологии, а также описываются существующие в настоящий момент подходы к микробиологической и молекулярно-биологической диагностике генов группы mcr.
ФБУН «Центральный НИИ эпидемиологии» Роспотребнадзора, Москва, Россия
ФБУН «Центральный НИИ эпидемиологии» Роспотребнадзора, Москва, Россия
НИИ антимикробной химиотерапии ФГБОУ ВО СГМУ Минздрава России, Смоленск, Россия
-
1.
Wanty C., Anandan A., Piek S., Walshe J., Ganguly J., Carlson R.W., et al. The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J Mol Biol. 2013;425(18):3389-3402.
DOI: 10.1016/J.JMB.2013.06.029
-
2.
Dickstein Y., Lellouche J., Ben Dalak Amar M., Schwartz D., Nutman A., Daitch V., et al. Treatment outcomes of colistin and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis. 2019;69(5):769-776.
DOI: 10.1093/cid/ciy988
-
3.
Farajzadeh Sheikh A., Shahin M., Shokoohizadeh L., Halaji M., Shahcheraghi F., Ghanbari F. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci. 2019;22(1):38-42.
DOI: 10.22038/ijbms.2018.29264.7
-
4.
Sheu C.-C., Chang Y.-T., Lin S.-Y., Chen Y.-H., Hsueh P.-R. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80.
DOI: 10.3389/fmicb.2019.00080
-
5.
WHO. Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics. Available at: www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.
-
6.
Liu Y.-Y., Wang Y., Walsh T.R., Yi L.-X., Zhang R., Spencer J., et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-168.
DOI: 10.1016/S14733099(15)00424-7
-
7.
Wang R., Van Dorp L., Shaw L.P., Bradley P., Wang Q., Wang X., et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9(1):1-9.
DOI: 10.1038/s41467-018-03205-z
-
8.
Muyembe T., Vandepitte J., Desmyter J. Natural colistin resistance in Edwardsiella tarda. Antimicrob Agents Chemother. 1973;4(5):521-524.
DOI: 10.1128/AAC.4.5.521
-
9.
Moffatt J.H., Harper M., Boyce J.D. Mechanisms of polymyxin resistance. Adv Exp Med Biol. 2019;1145:5571.
DOI: 10.1007/978-3-030-16373-0_5
-
10.
Chen H.D., Groisman E.A. The Biology of the PmrA/PmrB Two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol. 2013;67(1):83-112.
DOI: 10.1146/annurevmicro-092412-155751
-
11.
Mayers D.L., Sobel J.D., Ouellette M., Kaye K.S., Marchaim D., eds. Antimicrobial Drug Resistance. Cham: Springer International Publishing; 2017.
DOI: 10.1007/978-3319-46718-4
-
12.
Da Silva G., Domingues S. Interplay between colistin resistance, virulence and fitness in Acinetobacter baumannii. Antibiotics. 2017;6(4):28.
DOI: 10.3390/antibiotics6040028
-
13.
Campos M.A., Vargas M.A., Regueiro V., Llompart C.M., Alberti S., Bengoechea J.A. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72(12):7107-7114.
DOI: 10.1128/IAI.72.12.7107-7114.2004
-
14.
Yin J., Wang G., Cheng D., Fu J., Qiu J., Yu Z. Inactivation of polymyxin by hydrolytic mechanism. Antimicrob Agents Chemother. 2019;63(6).
DOI: 10.1128/AAC.02378-18
-
15.
Lamousin-White M., O’Callaghan R.J. Association between colistin resistance and broad-spectrum recipient deficiency in Klebsiella pneumoniae. Antimicrob Agents Chemother. 1986;30(6):964-965.
DOI: 10.1128/AAC.30.6.964
-
16.
Gao R., Hu Y., Li Z., Sun J., Wang Q., Lin J., et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog. 2016;12(11):e1005957.
DOI: 10.1371/journal.ppat.1005957
-
17.
Sun J., Xu Y., Gao R., Lin J., Wei W., Srinivas S., et al. Deciphering MCR-2 colistin resistance. mBio. 2017;8(3):e00625-17.
DOI: 10.1128/mBio.00625-17
-
18.
Kieffer N., Nordmann P., Poirel L. Moraxella species as potential sources of mcr-like polymyxin resistance determinants. Antimicrob Agents Chemother. 2017;61(6). pii: e00129-17.
DOI: 10.1128/AAC.00129-17
-
19.
Wei W., Srinivas S., Lin J., Tang Z., Wang S., Ullah S., et al. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis. PLoS Genet. 2018;14(5):e1007389.
DOI: 10.1371/journal.pgen.1007389
-
20.
Poirel L., Kieffer N., Nordmann P. In vitro study of ISApl1mediated mobilization of the colistin resistance gene mcr-1. Antimicrob Agents Chemother. 2017;61(7). pii: e0012717.
DOI: 10.1128/AAC.00127-177
-
21.
Bardaji L., Añorga M., Echeverría M., Ramos C., Murillo J. The toxic guardians – multiple toxin-antitoxin systems provide stability, avoid deletions and maintain virulence genes of Pseudomonas syringae virulence plasmids. Mob DNA. 2019;10(1):7.
DOI: 10.1186/s13100-0190149-4
-
22.
Matamoros S., van Hattem J.M., Arcilla M.S., Willemse N., Melles D.C., Penders J., et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep. 2017;7(1):15364.
DOI: 10.1038/s41598-017-15539-7-7
-
23.
Ye H., Li Y., Li Z., Gao R., Zhang H., Wen R., et al. Diversified mcr-1-harbouring plasmid reservoirs confer resistance to colistin in human gut microbiota. mBio. 2016;7(2):e00177-16.
DOI: 10.1128/mBio.00177-16
-
24.
Wang Q., Li Z., Lin J., Wang X., Deng X., Feng Y. Complex dissemination of the diversified mcr-1-harbouring plasmids in Escherichia coli of different sequence types. Oncotarget. 2016;7(50):82112-82122.
DOI: 10.18632/oncotarget.12621
-
25.
The NCBI Pathogen Detection project. Available from: www.ncbi.nlm.nih.gov/pathogens/.
-
26.
Partridge S.R. mcr-2 in the IncX4 plasmid pKP37-BE is flanked by directly oriented copies of ISEc69. J Antimicrob Chemother. 2017;72(5):1533-1535.
DOI: 10.1093/jac/dkw575
-
27.
Zhang H., Hou M., Xu Y., Srinivas S., Huang M., Liu L., et al. Action and mechanism of the colistin resistance enzyme mcr-4. Commun Biol. 2019;2(1):36.
DOI: 10.1038/s42003-018-0278-1
-
28.
Zhang H., Zong Z., Lei S., Srinivas S., Sun J., Feng Y., et al. A genomic, evolutionary, and mechanistic study of mcr-5 action suggests functional unification across the mcr family of colistin resistance. Adv Sci. 2019;1900034.
DOI: 10.1002/advs.201900034
-
29.
Kieffer N., Royer G., Decousser J.-W., Bourrel A.-S., Palmieri M., Ortiz De La Rosa J.-M., et al. mcr-9, an inducible gene encoding an acquired phosphoethanolamine transferase in Escherichia coli, and its origin. Antimicrob Agents Chemother. 2019;63(9). pii: e00965-19.
DOI: 10.1128/AAC.00965-19
-
30.
Dortet L., Potron A., Bonnin R.A., Plesiat P., Naas T., Filloux A., et al. Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Sci Rep. 2018;8(1):16910.
DOI: 10.1038/s41598-018-35041-y
-
31.
Borowiak M., Fischer J., Hammerl J.A., Hendriksen R.S., Szabo I., Malorny B. Identification of a novel transposonassociated phosphoethanolamine transferase gene, mcr5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72(12):3317-3324.
DOI: 10.1093/jac/dkx327
-
32.
Ma S., Sun C., Hulth A., Li J., Nilsson L.E., Zhou Y., et al. Mobile colistin resistance gene mcr-5 in porcine Aeromonas hydrophila. J Antimicrob Chemother. 2018;73(7):17771780.
DOI: 10.1093/jac/dky110
-
33.
Yang Y.-Q., Li Y.-X., Lei C.-W., Zhang A.-Y., Wang H.-N. Novel plasmid-mediated colistin resistance gene mcr7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(7):1791-1795.
DOI: 10.1093/jac/dky111
-
34.
Yang X., Liu L., Wang Z., Bai L., Li R. Emergence of mcr8.2-bearing Klebsiella quasipneumoniae of animal origin. J Antimicrob Chemother. 2019;74(9):2814-2817.
DOI: 10.1093/jac/dkz213
-
35.
Wang X., Wang Y., Zhou Y., Li J., Yin W., Wang S., et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7(1):1-9.
DOI: 10.1038/s41426018-0124-z
-
36.
Carroll L.M., Gaballa A., Guldimann C., Sullivan G., Henderson L.O., Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrugresistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio. 2019;10(3). pii: e00853-19.
DOI: 10.1128/mBio.00853-19
-
37.
AbuOun M., Stubberfield E.J., Duggett N.A., Kirchner M., Dormer L., Nunez-Garcia J., et al. mcr-1 and mcr-2 (mcr6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72(10):2745-2749.
DOI: 10.1093/jac/dkx286
-
38.
Xu Y., Wei W., Lei S., Lin J., Srinivas S., Feng Y. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance. mBio. 2018;9(2): e02317-17.
DOI: 10.1128/mBio.02317-17
-
39.
Xu Y., Lin J., Cui T., Srinivas S., Feng Y. Mechanistic insights into transferable polymyxin resistance among gut bacteria. J Biol Chem. 2018;293(12):4350-4365.
DOI: 10.1074/jbc.RA117.000924
-
40.
Li H., Yang L., Liu Z., Yin W., Liu D., Shen Y., et al. Molecular insights into functional differences between mcr-3- and mcr-1-mediated colistin resistance. Antimicrob Agents Chemother. 2018;62(9).
DOI: 10.1128/AAC.00366-18
-
41.
Yang Y.-Q., Li Y.-X., Song T., Yang Y.-X., Jiang W., Zhang A.-Y., et al. Colistin resistance gene mcr-1 and its variant in Escherichia coli isolates from chickens in China. Antimicrob Agents Chemother. 2017;61(5).
DOI: 10.1128/AAC.01204-16
-
42.
Wang C., Feng Y., Liu L., Wei L., Kang M., Zong Z. Identification of novel mobile colistin resistance gene mcr10. Emerg Microbes Infect. 2020;9(1):508-516.
DOI: 10.1080/22221751.2020.1732231
-
43.
Xu Y., Zhong L.-L., Srinivas S., Sun J., Huang M., Paterson D.L., et al. Spread of mcr-3 colistin resistance in China: an epidemiological, genomic and mechanistic study. EBioMedicine. 2018;34:139-157.
DOI: 10.1016/J.EBIOM.2018.07.027
-
44.
Al-Tawfiq J.A., Laxminarayan R., Mendelson M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis. 2017;54:77-84.
DOI: 10.1016/j.ijid.2016.11.415
-
45.
Azizov I., Sheck E., Sukhorukova M., Edelstein M. V. Plasmid-mediated resistance to colistin in clinical isolates of Klebsiella spp. and Escherichia coli: results of large retrospective surveillance in Russia. In: European Congeress of Clinical Microbiology and Infection Diseases. Paris; 2019:1413.
DOI: 10.13140/RG.2.2.34812.59527
-
46.
Kuzmenkov A.Yu, Trushin I.V, Avramenko A.A., Edelstein M.V., Dekhnich A.V., Kozlov R.S. AMRmap: an online platform for monitoring antibiotic resistance. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2017;19(2):84-90. Russian. (Кузьменков А.Ю., Трушин И.В., Авраменко А.А., Эйдельштейн М.В., Дехнич А.В., Козлов Р.С. AMRmap: Интернет-платформа мониторинга антибиотикорезистентности. Клиническая микробиология и антимикробная химиотерапия. 2017;19(2):84-90.)
-
47.
Shaidullina E.R., Edelstein M.V., Skleenova E.Yu., SukhorukovaM.V., Kozlov R.S. Antimicrobal resistance of nosocomial carbapenemase-producing Enterobacterales in Russia: results of surveillance, 2014-2016. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2018;20(4):362369. Russian. (Шайдуллина Э.Р., Эйдельштейн М.В., Склеенова Е.Ю., Сухорукова М.В., Козлов Р.С. Антибиотикорезистентность нозокомиальных карбапенемазопродуцирующих штаммов Enterobacterales в России: результаты эпидемиологического исследования 2014-2016 гг. Клиническая микробиология и антимикробная химиотерапия. 2018;20(4):362-369.)
DOI: 10.36488/cmac.2018.4.362-369
-
48.
Ageevets V., Lazareva I., Mrugova T., Gostev V., Lobzin Y., Sidorenko S. IncX4 plasmids harbouring mcr-1 genes: further dissemination. J Glob Antimicrob Resist. 2019;18:166167.
DOI: 10.1016/j.jgar.2019.07.002
-
49.
Chen K., Chan E.W.-C., Xie M., Ye L., Dong N., Chen S. Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. Eurosurveillance. 2017;22(39).
DOI: 10.2807/1560-7917.ES.2017.22.39.17-00206
-
50.
Lu X., Zeng M., Xu J., Zhou H., Gu B., Li Z., et al. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006-2016. EBioMedicine. 2019;42:133-144.
DOI: 10.1016/j.ebiom.2019.03.006
-
51.
Shen Y., Zhou H., Xu J., Wang Y., Zhang Q., Walsh T.R., et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nat Microbiol. 2018;3(9):1054-1062.
DOI: 10.1038/s41564-018-0205-8
-
52.
Ovejero C.M., Delgado-Blas J.F., Calero-Caceres W., Muniesa M., Gonzalez-Zorn B. Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. J Antimicrob Chemother. 2017;72(4):1050-1053.
DOI: 10.1093/jac/dkw533
-
53.
Zhao F., Feng Y., Lü X., McNally A., Zong Z. An IncP plasmid carrying the colistin resistance gene mcr-1 in Klebsiella pneumoniae from hospital sewage. Antimicrob Agents Chemother. 2017;61(2). pii: e02229-16.
DOI: 10.1128/AAC.02229-16
-
54.
Yang D., Qiu Z., Shen Z., Zhao H., Jin M., Li H., et al. The Occurrence of the colistin resistance gene mcr-1 in the Haihe River (China). Int J Environ Res Public Health. 2017;14(6):576.
DOI: 10.3390/ijerph14060576
-
55.
Schrauwen E.J.A., Huizinga P., van Spreuwel N., Verhulst C., Kluytmans-van den Bergh M.F.Q., Kluytmans J.A.J.W. High prevalence of the mcr-1 gene in retail chicken meat in the Netherlands in 2015. Antimicrob Resist Infect Control. 2017;6(1):83.
DOI: 10.1186/s13756-017-0242-8
-
56.
Carfora V., Alba P., Leekitcharoenphon P., Ballarò D., Cordaro G., Di Matteo P., et al. Colistin resistance mediated by mcr-1 in ESBL-producing, multidrug resistant Salmonella infantis in broiler chicken industry, Italy (2016-2017). Front Microbiol. 2018;9.
DOI: 10.3389/fmicb.2018.01880
-
57.
Zając M., Sztromwasser P., Bortolaia V., LeekitcharoenphonP., Cavaco L.M., Ziętek-Barszcz A., et al. Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011-2016. Front Microbiol. 2019;10.
DOI: 10.3389/fmicb.2019.01753
-
58.
Huang X., Yu L., Chen X., Zhi C., Yao X., Liu Y., et al. high prevalence of colistin resistance and mcr-1 gene in Escherichia coli isolated from food animals in China. Front Microbiol. 2017;8:562.
DOI: 10.3389/fmicb.2017.00562
-
59.
Hernández M., Iglesias M.R., Rodríguez-Lázaro D., Gallardo A., Quijada N., Miguela-Villoldo P., et al. Cooccurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Eurosurveillance. 2017;22(31):30586.
DOI: 10.2807/1560-7917.ES.2017.22.31.30586
-
60.
Yamamoto Y., Calvopina M., Izurieta R., Villacres I., Kawahara R., Sasaki M., et al. Colistin-resistant Escherichia coli with mcr genes in the livestock of rural small-scale farms in Ecuador. BMC Res Notes. 2019;12(1):121.
DOI: 10.1186/s13104-019-4144-0
-
61.
Lei L., Wang Y., Schwarz S., Walsh T.R., Ou Y., Wu Y., et al. mcr-1 in Enterobacteriaceae from companion animals, Beijing, China, 2012–2016. Emerg Infect Dis. 2017;23(4):710-711.
DOI: 10.3201/eid2304.161732
-
62.
Hormozi S.F., Vasei N., Aminianfar M., Darvishi M., Saeedi A.A. Antibiotic resistance in patients suffering from nosocomial infections in Besat Hospital. Eur J Transl Myol. 2018;28(3).
DOI: 10.4081/ejtm.2018.7594
-
63.
Denys G.A., Relich R.F. Antibiotic resistance in nosocomial respiratory infections. Clin Lab Med. 2014;34(2):257270.
DOI: 10.1016/j.cll.2014.02.004
-
64.
Heydarpour F., Rahmani Y., Heydarpour B., Asadmobini A. Nosocomial infections and antibiotic resistance pattern in open-heart surgery patients at Imam Ali Hospital in Kermanshah, Iran. GMS Hyg Infect Control. 2017;12:Doc07.
DOI: 10.3205/dgkh000292
-
65.
Liu S., Wang M., Zheng L., Guan W. Antimicrobial resistance profiles of nosocomial pathogens in regional China: a brief report from two tertiary hospitals in China. Med Sci Monit. 2018;24:8602-8607.
DOI: 10.12659/MSM.911229
-
66.
Caselli E., D’Accolti M., Soffritti I., Piffanelli M., Mazzacane S. Spread of mcr-1-driven colistin resistance on hospital surfaces, Italy. Emerg Infect Dis. 2018;24(9):1752-1753.
DOI: 10.3201/eid2409.171386
-
67.
Haenni M., Poirel L., Kieffer N., Châtre P., Saras E., Métayer V., et al. Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids. Lancet Infect Dis. 2016;16(3):281-282.
DOI: 10.1016/S1473-3099(16)00007-4
-
68.
Shafiq M., Huang J., ur Rahman S., Shah J.M., Chen L., Gao Y., et al. High incidence of multidrug-resistant Escherichia coli coharboring mcr-1 and blaCTX-M-15 recovered from pigs. Infect Drug Resist. 2019;12:21352149.
DOI: 10.2147/IDR.S209473
-
69.
Yao X., Doi Y., Zeng L., Lv L., Liu J.-H. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis. 2016;16(3):288-289.
DOI: 10.1016/S1473-3099(16)00057-8
-
70.
Hammad A.M., Hoffmann M., Gonzalez-Escalona N., Abbas N.H., Yao K., Koenig S., et al. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect Genet Evol. 2019;73:126-131.
DOI: 10.1016/j.meegid.2019.04.021
-
71.
He T., Wei R., Zhang L., Sun L., Pang M., Wang R., et al. Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows. Vet Microbiol. 2017;207:153-158.
DOI: 10.1016/j.vetmic.2017.06.010
-
72.
Wu L., Chen J., Wang L., Wu Z. Whole genome sequence of an MCR-1-carrying, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli ST746 isolate recovered from a community-acquired urinary tract infection. J Glob Antimicrob Resist. 2018;13:171-173.
DOI: 10.1016/j.jgar.2018.03.014
-
73.
Garza-Ramos U., Tamayo-Legorreta E., ArellanoQuintanilla D.M., Rodriguez-Medina N., Silva-Sanchez J., Catalan-Najera J., et al. Draft genome sequence of a multidrug- and colistin-resistant mcr-1-producing Escherichia coli isolate from a swine farm in Mexico. Genome Announc. 2018;6(10).
DOI: 10.1128/genomeA.00102-18
-
74.
Zurfluh K., Stevens M., Bucher M., Poirel L., Nordmann P., Stephan R. Full genome sequence of pT3, a multiresistant plasmid carrying the mcr-3.5 colistin resistance gene, recovered from an extended-spectrum-β-lactamaseproducing Escherichia coli isolate from crickets sold as food. Microbiol Resour Announc. 2019;8(29). pii: e00647-19.
DOI: 10.1128/MRA.00647-19
-
75.
Poirel L., Nordmann P. Emerging plasmid-encoded colistin resistance: the animal world as the culprit? J Antimicrob Chemother. 2016;71(8):2326-2327.
DOI: 10.1093/jac/dkw074
-
76.
Liu X., Geng S., Chan E.W.-C., Chen S. Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017. Eurosurveillance. 2019;24(13).
DOI: 10.2807/15607917.ES.2019.24.13.1800113
-
77.
Giani T., Sennati S., Antonelli A., Di Pilato V., di Maggio T., Mantella A., et al. High prevalence of carriage of mcr-1positive enteric bacteria among healthy children from rural communities in the Chaco region, Bolivia, September to October 2016. Eurosurveillance. 2018;23(45).
DOI: 10.2807/1560-7917.ES.2018.23.45.1800115
-
78.
Tarabai H., Valcek A., Jamborova I., Vazhov S.V., Karyakin I.V., Raab R., et al. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli from a black kite in Russia. Antimicrob Agents Chemother. 2019;63(9):e01266-19.
DOI: 10.1128/AAC.01266-19
-
79.
Ruzauskas M., Vaskeviciute L. Detection of the mcr-1 gene in Escherichia coli prevalent in the migratory bird species Larus argentatus. J Antimicrob Chemother. 2016;71(8):23332334.
DOI: 10.1093/jac/dkw245
-
80.
Ahmed Z.S., Elshafiee E.A., Khalefa H.S., Kadry M., Hamza D.A. Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. Antimicrob Resist Infect Control. 2019;8(1):197.
DOI: 10.1186/s13756-019-0657-5
-
81.
Pfennigwerth N., Kaminski A., Korte-Berwanger M., Pfeifer Y., Simon M., Werner G., et al. Evaluation of six commercial products for colistin susceptibility testing in Enterobacterales. Clin Microbiol Infect. 2019;25(11):13851389.
DOI: 10.1016/j.cmi.2019.03.017
-
82.
Satlin M.J., Lewis J.S., Weinstein M.P., Patel J., Humphries R.M., Kahlmeter G., et al. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing Position Statements on Polymyxin B and Colistin Clinical Breakpoints. Clin Infect Dis. 2020;71(9):e523-e529.
DOI: 10.1093/cid/ciaa121
-
83.
Weinstein M.P., Kirn Jr. T.J., Lewis II J.S., Limbago B., Bobenchik A.M., Mathers A.J., et al. CLSI M100-ED30:2020 Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition.
-
84.
Bardet L., Rolain J.-M. Development of new tools to detect colistin-resistance among Enterobacteriaceae strains. Can J Infect Dis Med Microbiol. 2018;2018:1-25.
DOI: 10.1155/2018/3095249
-
85.
Tsuji B.T., Pogue J.M., Zavascki A.P., Paul M., Daikos G.L., Forrest A., et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDS. Pharmacother J Hum Pharmacol Drug Ther. 2019;39(1):10-39.
DOI: 10.1002/phar.2209
-
86.
Mouton J.W., Muller A.E., Canton R., Giske C.G., Kahlmeter G., Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564568.
DOI: 10.1093/jac/dkx427
-
87.
CLSI-EUCAST. Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. 2016. Available from: www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf.
-
88.
Jerke K.H., Lee M.J., Humphries R.M. Polymyxin susceptibility testing: a cold case reopened. Clin Microbiol Newsl. 2016;38(9):69-77.
DOI: 10.1016/j.clinmicnews.2016.04.003
-
89.
Carretto E., Brovarone F., Russello G., Nardini P., ElBouseary M.M., Aboklaish A.F., et al. Clinical validation of SensiTest Colistin, a broth microdilution-based method to evaluate colistin MICs. J Clin Microbiol. 2018;56(4). pii: e01523-17.
DOI: 10.1128/JCM.01523-17
-
90.
Chew K.L., La M.-V., Lin R.T.P., Teo J.W.P. Colistin and polymyxin B susceptibility testing for carbapenemresistant and mcr-positive Enterobacteriaceae: comparison of Sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J Clin Microbiol. 2017;55(9):2609-2616.
DOI: 10.1128/JCM.00268-17
-
91.
Matuschek E., Åhman J., Webster C., Kahlmeter G. Antimicrobial susceptibility testing of colistin – evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018;24(8):865-870.
DOI: 10.1016/j.cmi.2017.11.020
-
92.
Bosacka K., Kozińska A., Stefaniuk E., Rybicka J., Mikołajczyk A., Młodzińska E., et al. Colistin antimicrobial susceptibility testing of Gram-negative bacteria – evaluation of tests available in Poland. Proceedings of 28th European Congress of Clinical Microbiology and Infectious Diseases, 21-24 April, 2018, Madrid, Spain. E0116.
-
93.
Coppi M., Cannatelli A., Antonelli A., Baccani I., Di Pilato V., Sennati S., et al. A simple phenotypic method for screening of MCR-1-mediated colistin resistance. Clin Microbiol Infect. 2018;24(2):201.e1-201.e3.
DOI: 10.1016/j.cmi.2017.08.011
-
94.
Singhal L., Sharma M., Verma S., Kaur R., Britto X.B., Kumar S.M., et al. Comparative evaluation of broth microdilution with polystyrene and glass-coated plates, agar dilution, E-Test, Vitek, and disk diffusion for susceptibility testing of colistin and polymyxin B on carbapenem-resistant clinical isolates of Acinetobacter baumannii. Microb Drug Resist. 2018;24(8):1082-1088.
DOI: 10.1089/mdr.2017.0251
-
95.
Karvanen M., Malmberg C., Lagerbäck P., Friberg L.E., Cars O. Colistin is extensively lost during standard in vitro experimental conditions. Antimicrob Agents Chemother. 2017;61(11).
DOI: 10.1128/AAC.00857-17
-
96.
Hindler J.A., Humphries R.M. Colistin MIC variability by method for contemporary clinical isolates of multidrugresistant gram-negative bacilli. J Clin Microbiol. 2013;51(6):1678-1684.
DOI: 10.1128/JCM.03385-12
-
97.
Osei Sekyere J. Mcr colistin resistance gene: a systematic review of current diagnostics and detection methods. Microbiologyopen. 2019;8(4):e00682.
DOI: 10.1002/mbo3.682
-
98.
Bell D.T., Bergman Y., Kazmi A.Q., Lewis S., Tamma P.D., Simner P.J. A novel phenotypic method to screen for plasmidmediated colistin resistance among Enterobacteriales. J Clin Microbiol. 2019;57(5). pii: e00040-19.
DOI: 10.1128/JCM.00040-19
-
99.
Abdul Momin M.H.F., Bean D.C., Hendriksen R.S., Haenni M., Phee L.M., Wareham D.W. CHROMagar COLAPSE: a selective bacterial culture medium for the isolation and differentiation of colistin-resistant Gram-negative pathogens. J Med Microbiol. 2017;66(11):1554-1561.
DOI: 10.1099/jmm.0.000602
-
100.
Bardet L., Le Page S., Leangapichart T., Rolain J.-M. LBJMR medium: a new polyvalent culture medium for isolating and selecting vancomycin and colistin-resistant bacteria. BMC Microbiol. 2017;17(1):220.
DOI: 10.1186/s12866-0171128-x
-
101.
Nordmann P., Jayol A., Poirel L. A universal culture medium for screening polymyxin-resistant Gram-negative isolates. J Clin Microbiol. 2016;54(5):1395-1399.
DOI: 10.1128/JCM.00446-16
-
102.
Przybysz S.M., Correa-Martinez C., Köck R., Becker K., Schaumburg F. SuperPolymyxinTM medium for the screening of colistin-resistant Gram-negative bacteria in stool samples. Front Microbiol. 2018;9:2809.
DOI: 10.3389/fmicb.2018.02809
-
103.
Lescat M., Poirel L., Nordmann P. Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes. Diagn Microbiol Infect Dis. 2018;92(4):267-269.
DOI: 10.1016/j.diagmicrobio.2018.04.010
-
104.
Rebelo A.R., Bortolaia V., Kjeldgaard J.S., Pedersen S.K., Leekitcharoenphon P., Hansen I.M., et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance. 2018;23(6).
DOI: 10.2807/1560-7917.ES.2018.23.6.17-00672
-
105.
Chabou S., Leangapichart T., Okdah L., Le Page S., Hadjadj L., Rolain J.-M. Real-time quantitative PCR assay with Taqman® probe for rapid detection of MCR-1 plasmid-mediated colistin resistance. New Microbes New Infect. 2016;13:71-74.
DOI: 10.1016/j.nmni.2016.06.017
-
106.
Daniels J.B., Campbell D., Boyd S., Ansari U., Lutgring J., Rasheed J.K., et al. Development and validation of a clinical laboratory improvement amendments-compliant multiplex real-time PCR assay for detection of mcr genes. Microb Drug Resist. 2019;25(7):991-996.
DOI: 10.1089/mdr.2018.0417
-
107.
Bontron S., Poirel L., Nordmann P. Real-time PCR for detection of plasmid-mediated polymyxin resistance (mcr-1) from cultured bacteria and stools. J Antimicrob Chemother. 2016;71(8):2318-2320.
DOI: 10.1093/jac/dkw139
-
108.
Donà V., Bernasconi O.J., Kasraian S., Tinguely R., Endimiani A. A SYBR® Green-based real-time PCR method for improved detection of mcr-1-mediated colistin resistance in human stool samples. J Glob Antimicrob Resist. 2017;9:57-60.
DOI: 10.1016/j.jgar.2017.01.007
-
109.
Nijhuis R.H.T., Veldman K.T., Schelfaut J., Van Essen-Zandbergen A., Wessels E., Claas E.C.J., et al. Detection of the plasmid-mediated colistin-resistance gene mcr-1 in clinical isolates and stool specimens obtained from hospitalized patients using a newly developed real-time PCR assay: Table 1. J Antimicrob Chemother. 2016;71(8):2344-2346.
DOI: 10.1093/jac/dkw192
-
110.
Li J., Shi X., Yin W., Wang Y., Shen Z., Ding S., Wang S. A multiplex SYBR Green real-time PCR assay for the detection of three colistin resistance genes from cultured bacteria, feces, and environment samples. Front Microbiol. 2017;8:2078.
DOI: 10.3389/fmicb.2017.02078
-
111.
Tolosi R., Apostolakos I., Laconi A., Carraro L., Grilli G., Cagnardi P., et al. Rapid detection and quantification of plasmid-mediated colistin resistance genes (mcr-1 to mcr5) by real-time PCR in bacterial and environmental samples. J Appl Microbiol. 2020;129(6):1523-1529.
DOI: 10.1111/jam.14738
-
112.
Borowiak M., Baumann B., Fischer J., Thomas K., Deneke C., Hammerl J.A., et al. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (20112018) in Germany. Front Microbiol. 2020;11:80.
DOI: 10.3389/fmicb.2020.00080
-
113.
Bernasconi O.J., Principe L., Tinguely R., Karczmarek A., Perreten V., Luzzaro F., et al. Evaluation of a new commercial microarray platform for the simultaneous detection of β-lactamase and mcr-1 and mcr-2 genes in Enterobacteriaceae. J Clin Microbiol. 2017;55(10):31383141.
DOI: 10.1128/JCM.01056-17
-
114.
WHO. Landscape of Diagnostics against Antibacterial Resistance, Gaps and Priorities.; 2019. Available at: www.who.int/publications/i/item/10665326480.
-
115.
Alao E., Torres M.P., Cossette S., Connelly C. Detection of mobilized colistin resistance (mcr) genes by multiplex real-time PCR: improving surveillance of an emerging threat. 2019. Available at: www.streck.com/wp-content/uploads/2020/03/Detection-of-Mobilized-ColistinResistance-Genes-Esther-Alao.pdf.
-
116.
Volland H., Vogel A., Bernabeu S., Boutal H., Haenni M., Madec J.-Y., et al. A multicentric validation of a rapid detection test for MCR-1 producing bacteria. Proceedings of 28th European Congress of Clinical Microbiology and Infectious Diseases, 21-24 April, 2018, Madrid, Spain. P2460.
-
117.
Liu Y.-Y., Chandler C.E., Leung L.M., McElheny C.L., Mettus R.T., Shanks R., et al. Structural modification of lipopolysaccharide conferred by mcr-1 in Gram-negative ESKAPE pathogens. Antimicrob Agents Chemother. 2017;61(6):e00580-17.
DOI: 10.1128/AAC.00580-17
-
118.
Dortet L., Bonnin R.A., Pennisi I., Gauthier L., Jousset A.B., Dabos L., et al. Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: the MALDIxin test. J Antimicrob Chemother. 2018;73(12):33593367.
DOI: 10.1093/jac/dky330
-
119.
Bitar I., Medvecky M., Gelbicova T., Jakubu V., Hrabak J., Zemlickova H., et al. Complete nucleotide sequences of mcr-4.3-carrying plasmids in Acinetobacter baumannii sequence type 345 of human and food origin from the Czech Republic, the first case in Europe. Antimicrob Agents Chemother. 2019;63(10). pii: e01166-19.
DOI: 10.1128/AAC.01166-19
-
120.
Zurfluh K., Tasara T., Poirel L., Nordmann P., Stephan R. Draft genome sequence of Escherichia coli S51, a chicken isolate harboring a chromosomally encoded mcr-1 gene. Genome Announc. 2016;4(4). pii: e00796-16.
DOI: 10.1128/genomeA.00796-16
-
121.
Gilrane V.L., Lobo S., Huang W., Zhuge J., Yin C., Chen D., et al. Complete genome sequence of a colistin-resistant Escherichiacoli strain harboring mcr-1 on an IncHI2 plasmid in the United States. Genome Announc. 2017;5(42):e0109517.
DOI: 10.1128/genomeA.01095-17
-
122.
Borowiak M., Hammerl J.A., Fischer J., Szabo I., Malorny B. Complete genome sequence of Salmonella enterica subsp. enterica serovar Paratyphi B sequence type 28 harboring mcr-1. Genome Announc. 2017;5(37):e00991-17.
DOI: 10.1128/genomeA.00991-17
-
123.
Lindsey R.L., Batra D., Rowe L., Loparev V.N., Stripling D., Garcia-Toledo L., et al. High-quality genome sequence of an Escherichia coli O157 strain carrying an mcr-1 resistance gene isolated from a patient in the United States. Genome Announc. 2017;5(11). pii: e01725-16.
DOI: 10.1128/genomeA.01725-16
-
124.
Ewers C., Göttig S., Bülte M., Fiedler S., Tietgen M., Leidner U., et al. Genome sequence of avian Escherichia coli strain IHIT25637, an extraintestinal pathogenic E. coli strain of ST131 encoding colistin resistance determinant mcr-1. Genome Announc. 2016;4(5):e00863-16.
DOI: 10.1128/genomeA.00863-16
-
125.
Xavier B.B., Lammens C., Butaye P., Goossens H., MalhotraKumar S. Complete sequence of an IncFII plasmid harbouring the colistin resistance gene mcr-1 isolated from Belgian pig farms. J Antimicrob Chemother. 2016;71(8):2342-2344.
DOI: 10.1093/jac/dkw191
-
126.
Gao R., Wang Q., Li P., Li Z., Feng Y. Genome sequence and characteristics of plasmid pWH12, a variant of the mcr-1-harbouring plasmid pHNSHP45, from the multidrug resistant E. coli. Virulence. 2016;7(6):732-735.
DOI: 10.1080/21505594.2016.1193279
-
127.
Jia B., Raphenya A.R., Alcock B., Waglechner N., Guo P., Tsang K.K., et al. CARD 2017: expansion and modelcentric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016;45(D1):D566-D573.
DOI: 10.1093/nar/gkw1004
-
128.
Suzuki S., Ohnishi M., Kawanishi M., Akiba M., Kuroda M. Investigation of a plasmid genome database for colistinresistance gene mcr-1. Lancet Infect Dis. 2016;16(3):284285.
DOI: 10.1016/S1473-3099(16)00008-6
-
129.
Gupta S.K., Padmanabhan B.R., Diene S.M., LopezRojas R., Kempf M., Landraud L., et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212-220.
DOI: 10.1128/AAC.01310-13
-
130.
Liu B., Pop M. ARDB – Antibiotic Resistance Genes Database. Nucleic Acids Res. 2009;37(Database issue):D443-D447.
DOI: 10.1093/nar/gkn656
-
131.
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-2644.
DOI: 10.1093/jac/dks261
-
132.
Khedher M. Ben, Baron S.A., Riziki T., Ruimy R., Diene S.M., Rolain J.-M. Massive analysis of 64’628 bacterial genomes to decipher a water reservoir and origin of mobile colistin resistance (mcr) gene variants: is there another role for this family of enzymes? bioRxiv. 2019;(33):763474.
DOI: 10.1101/763474
-
133.
Bozcal E. Insight into the mobilome of Escherichia coli. Intech. 2016;i(tourism):13.
DOI: 10.5772/57353
-
134.
Ling Z., Yin W., Shen Z., Wang Y., Shen J., Walsh T.R. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother. 2020;75(11):3087-3095.
DOI: 10.1093/jac/dkaa205
-
135.
Eichhorn I., Feudi C., Wang Y., Kaspar H., Feßler A.T., Lübke-Becker A., et al. Identification of novel variants of the colistin resistance gene mcr-3 in Aeromonas spp. from the national resistance monitoring programme GERM-Vet and from diagnostic submissions. J Antimicrob Chemother. 2018;73(5):1217-1221.
DOI: 10.1093/jac/dkx538
-
136.
Wang X., Wang Y., Zhou Y., Wang Z., Wang Y., Zhang S., et al. Emergence of colistin resistance gene mcr-8 and its variant in Raoultella ornithinolytica. Front Microbiol. 2019;10:228.
DOI: 10.3389/fmicb.2019.00228
-
137.
Ma F., Shen C., Zheng X., Liu Y., Chen H., Zhong L., et al. Identification of a novel plasmid carrying mcr-4.3 in an Acinetobacter baumannii strain in China. Antimicrob Agents Chemother. 2019;63(6). pii: e00133-19.
DOI: 10.1128/AAC.00133-19
-
138.
Gelbíčová T., Baráková A., Florianová M., Karpíšková R. [Detection of colistin-resistant Acinetobacter baumannii with the mcr-4 gene]. Klin Mikrobiol Infekc Lek. 2019;25(1):46. PMID: 31266086
-
139.
Martins-Sorenson N., Snesrud E., Xavier D.E., Cacci L.C., Iavarone A.T., McGann P., et al. A novel plasmid-encodedmcr-4.3 gene in a colistin-resistant Acinetobacter baumannii clinical strain. J Antimicrob Chemother. 2020;75(1):60-64.
DOI: 10.1093/jac/dkz413
-
140.
Hameed F., Khan M.A., Muhammad H., Sarwar T., Bilal H., Rehman T.U. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop. 2019;52:e20190237.
DOI: 10.1590/0037-8682-0237-2019
-
141.
Snesrud E., Maybank R., Kwak Y.I., Jones A.R., Hinkle M.K., McGann P. Chromosomally encoded mcr-5 in colistinnonsusceptible Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2018;62(8):e00679-18.
DOI: 10.1128/AAC.00679-18
-
142.
Wojnicz D., Tichaczek-Goska D. Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Braz J Microbiol. 2013;44(1):259-265.
DOI: 10.1590/S1517-83822013000100037
-
143.
Sato Y., Unno Y., Ubagai T., Ono Y. Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation. PLoS One. 2018;13(3):e0194556.
DOI: 10.1371/journal.pone.0194556
-
144.
Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-1658.
DOI: 10.2147/IDR.S173867
-
145.
Sharland M., Pulcini C., Harbarth S., Zeng M., Gandra S., Mathur S., et al. Classifying antibiotics in the WHO Essential Medicines List for optimal use-be AWaRe. Lancet Infect Dis. 2018;18(1):18-20.
DOI: 10.1016/S14733099(17)30724-7
-
146.
Harbottle H., Thakur S., Zhao S., White D.G. Genetics of antimicrobial resistance. Anim Biotechnol. 2006;17(2):111124.
DOI: 10.1080/10495390600957092