Abstract
Over the last years, Gram-negative bacilli are the leading cause of nosocomial infections in different part of the world. Intensive care units (ICUs) differ from other units by continuous healthcare worker-to-patient contacts, large number of invasive procedures, and common use of antimicrobial agents, thus, promoting selection of resistant strains. One of the most common pathogens in ICU patients is Escherichia coli. This paper presents characteristics of the common E. coli serotypes and their prevalence data. Results from multicenter surveillance studies on the incidence of E. coli as a causative agent in bloodstream infections, nosocomial pneumonia, skin and soft tissue infections are also provided. Current incidence rates (including Russian data) of resistance of E. coli to main antimicrobial classes are described in detail. A focus on prevalence of ESBL-producing E. coli strains and different types of ESBL is made.
-
1.
Vincent J.L. Nosocomial infections in adult intencivecare units. Lancet 2003; 361:2068-77.
-
2.
Stephen J., Mutnick A., Jones R.N. Assessment of pathogens and resistance (R) patterns among intensive care unit (ICU) patients in North America (NA): initial report from the SENTRY Antimicrobial Surveillance Program (2001). Proceedings of the 42nd Interscience Congress of Antimicrobial Agents and Chemotherapy. San Diego, USA. 2002; Abst. C2-297.
-
3.
Escherich T. The intestinal bacteria of the neonate and breast-fed infant. Rev Infect Dis 1989; 11(2):352-6.
-
4.
Conway P.L. Microbial ecology of the human large intestine. In: Gibson G.R. and Macfarlane G.T., eds. Human colonic bacteria: role in nutrition, physiology, and pathology. CRC Press, Boca Raton, FL, 1995; p.1-24
-
5.
Manning S.D., H. Babcock, Heymann D.L. Escherichia coli infections. 2nd ed. Chelsea House, New York, 2010.
-
6.
Hilbert D.V. Uropathogenic Escherichia coli: The PreEminent Urinary Tract Infection Pathogen Nova Science Publishers 2004–2011; p. 1-66.
-
7.
Bopp C.A., Brenner F.W., Fields P.I., et al. Escherichia, Shigella, and Salmonella. In: Murray P.R., Baron E.J. Jorgensen J.H. et al. Clinical Microbiology 8th ed. ASM Press, Washington, 2003; p. 654-71.
-
8.
Baumgart M., Dogan B., Rishniw M., et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. SME J 2007; 1:403-18.
-
9.
Gould L.H., Demma L., Jones T.F., et al. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000-2006. Clin Infect Dis 2009; 49:1480-5.
-
10.
Rubino S, Cappuccinelli P, Kelvin DJ. Escherichia coli (STEC) serotype O104 outbreak causing haemolytic syndrome (HUS) in Germany and France. J Infect Dev Ctries 2011; 5:437-40.
-
11.
Guanche-Garcell H., Requejo-Pino O., Rosenthal V.D., et. al. Device-associated infection rates in adult intensive care units of Cuban university hospitals: International Nosocomial Infection Control Consortium (INICC) findings Int J Infect Dis 2011; 15:e357-62.
-
12.
Arndt S., Lauf H., Weiss G. Spectrum of microbial colonisation and resistance of a surgical ICU in a systematic comparison of the 10-year time period 1996-2005 using routine microbiological testing. Zentralbl Chir 2011; 136:152-8.
-
13.
Luzzaro F., Ortisi G., Larosa M., et al. Prevalence and epidemiology of microbial pathogens causing bloodstream infections: results of the OASIS multicenter study. Diagn Microbiol Infect Dis 2011; 69:363-9.
-
14.
Son J.S., Song J.H., Ko K.S. Bloodstream infections and clinical significance of healthcare-associated bacteremia: a multicenter surveillance study in Korean hospitals. J Korean Med Sci 2010; 25:992-8.
-
15.
Amazian K., Rossello J., Castella A., et al. Prevalence of nosocomial infections in 27 hospitals in the Mediterranean region. East Mediterr Health J 2010; 16:1070-8.
-
16.
Fernandes R., Prudêncio C. Post-surgical wound infections involving Enterobacteriaceae with reduced susceptibility to β-lactams in two Portuguese hospitals. Int Wound J 2010; 7(6):508-14.
-
17.
Jones R.N. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51(Suppl 1):S81-7.
-
18.
Рябкова Е.Л., Иванчик Н.В., Сухорукова М.В. с соавт. Резистентность нозокомиальных штаммов Escherihia coli в стационарах России. Клин микробиол антимикроб химиотер 2009; 11:161-9.
-
19.
Ferrández O., Grau S., Saballs P., et al. Mortality risk factors for bloodstream infections caused by extendedspectrum beta-lactamase-producing microorganisms. Rev Clin Esp 2011; 211:119-26.
-
20.
Marlieke E. A. de Kraker, Peter G., et al. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe PLoS Med 2011; 8:e1001-104.
-
21.
Khan F.Y., Elshafie S.S., Almaslamani M., et al. Epidemiology of bacteraemia in Hamad general hospital, Qatar: a one year hospital-based study. Travel Med Infect Dis 2010; 8:377-87.
-
22.
Lubart E., Segal R., Haimov E., et al. Bacteremia in a multilevel geriatric hospital. J Am Med Dir Assoc 2011; 12:204-7.
-
23.
Andriatahina T., Randrianirina F., Hariniana E.R., et al. High prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric unit in Madagascar. BMC Infect Dis 2010; 10:204.
-
24.
Chong Y., Ito Y., Kamimura T. Genetic evolution and clinical impact in extended-spectrum β-lactamaseproducing Escherichia coli and Klebsiella pneumonia. Infect Genet Evol 2011; 11:1499-504.
-
25.
Chong Y., Yakushiji H., Ito Y., et al. Clinical and molecular epidemiology of extended-spectrum β-lactamaseproducing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis 2011; 30:83-7.
-
26.
Mora A., Blanco M., López C., et al. Emergence of clonal groups O1:HNM-D-ST59, O15:H1-D-ST393, O20:H34/ HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42- B1-ST101 among CTX-M-14-producing Escherichia coli clinical isolates in Galicia, northwest Spain. Int J Antimicrob Agents 2011; 37:16-21.
-
27.
Cullen I.M., Manecksha R.P., McCullagh E., et al. The changing pattern of antimicrobial resistance within 42 033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009.BJU Int. 2011 Aug 24. doi: 10.1111/j.1464-410X.2011.10528.x.
-
28.
Bhusal Y., Mihu C.N., Tarrand J.J., et al. Incidence of fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli at a comprehensive cancer center in the United States.Chemotherapy 2011; 57:335-8.
-
29.
Johnson J.R., Johnston B., Clabots C. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010; 51:286-94.
-
30.
Cerquetti M., Giufrè M., García-Fernández A. Ciprofloxacin-resistant, CTX-M-15-producing Escherichia coli ST131 clone in extraintestinal infections in Italy. J Clin Microbiol Infect 2010; 16:1555-8.
-
31.
Yumuk Z., Afacan G., Nicolas-Chanoine M.H., et. al. Turkey: a further country concerned by communityacquired Escherichia coli clone O25-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 62(2):284-8.
-
32.
Platell J.L., Cobbold R.N., Johnson J.R., et al. Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother 2011; 55:3782-7.
-
33.
Watanabe M., Iyobe S., Inoue M., et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35:147-51.
-
34.
Ito H., Arakawa Y., Ohsuka S., et al. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995; 39:824-9.
-
35.
Senda K., Arakawa Y., Nakashima K., et al. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum betalactams, including carbapenems. Antinicrob Agents Chemother 1996; 30:349-53.
-
36.
Senda K., Arakawa Y., Ichiyama S., et al. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol 1996; 34:2909-13.
-
37.
Rossolini G.M. Acquired metallo-beta-lactamases: an increasing clinical threat. Clin Infect Dis 2005; 41(11):1557-8.
-
38.
Walsh T.R. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005; 11(Suppl 6):2-9.
-
39.
Miriagou V., Cornaglia G., Eidelstein M. et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect 2010; 2:112-22.
-
40.
Cendejas E., Gómez-Gil R., Gómez-Sánchez P. Detection and characterization of Enterobacteriaceae producing metallo-beta-lactamases in a tertiary-care hospital in Spain. Clin Microbiol Infect 2010; 16:181-3.
-
41.
Kumarasamy K.K., Toleman M.A., Walsh T.R., et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010; 10:597- 602.