Abstract
Many emerging and reemerging bacterial pathogens synthesize toxins that serve as primary virulence factors. We highlight seven bacterial toxins produced by well-established or newly emergent pathogenic microbes. These toxins, which affect eukaryotic cells by a variety of means, include Staphylococcus aureus β-toxin, Shiga toxin, cytotoxic necrotizing factor type 1, Escherichia coli heat-stable toxin, botulinum and tetanus neurotoxins, and S. aureus toxic-shock syndrome toxin. For each, we discuss the information available on its synthesis and structure, mode of action, and contribution to virulence. We also review the role certain toxins have played in unraveling signal pathways in eukaryotic cells and summarize the beneficial uses of toxins and toxoids. Our intent is to illustrate the importance of the analysis of bacterial toxins to both basic and applied sciences.
-
1.
Roux E, Yersin A. Contribution a l'etude de la diphtherie. Ann Inst Pasteur 1888; 629-61.
-
2.
Schlessinger D, Schaechter M. Bacterial toxins. In: Schaechter M, Medoff G, Eigenstein Bl, editors. Mechanisms of microbial disease. 2nd ed. Baltimore: Williams and Wilkins; 1993.p. 162-75.
-
3.
Songer JG. Bacterial phospholipases and their role in virulence. Trends Microbiol 1997;5:156-61.
-
4.
Lottenberg R, Minning-Wenz D, Boyle MD. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol 1994;2:20-4.
-
5.
Harrington DJ. Bacterial collagenases and collagendegrading enzymes and their potential role in human disease. Infect Immun 1996;64:1885-91.
-
6.
Bhakdi S, Tranum Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev 1991;55:733-51.
-
7.
Tomita T, Kamio Y. Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, alpha- and gamma-hemolysins and leukocidin. Biosci Biotechnol Biochem1997;61:565-72.
-
8.
Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Weller U, et al. Staphylococcal alpha-toxin, streptolysin-O and Escherichia coli hemolysm: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 1996;165:73-9.
-
9.
Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996;274:1859-66.
-
10.
Lesieur C, Vecsey Semjen B, Abrami L, Fivaz M, Gisouvan der Goot F.Membrane insertion: the strategies of toxins. Mol Membr Biol 1997;14:45-64.
-
11.
Collier RJ, In: Moss J, Vaughan M, editors. ADP-ribosylating toxins and g proteins. Washington: Am Soc Microbiol; 1990.p.3-19.
-
12.
Wick MJ, Iglewski BH. In: Moss J, Vaughan M, editors. ADP-ribosylating toxins and g proteins. Washington: Am Soc Microbiol; 1990.p.11-43.
-
13.
Endo Y, Tsurugi K, Yutsucio T, Takeda Y, Ogasawara Y, Igarashi K. Site of action of a Vero toxin (VT2) from Escherichia coli. O157:147 and Shiga toxin in eucaryotic ribosomes. Eur J Biochem 198;17l:45-50.
-
14.
Saxena SK, O-Brien AD, Ackerman KJ. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected Xenopus oocytes. J Biol Chem 1989;264:596-601.
-
15.
Tesh VL, O-Brien AD. The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins. Mol Microbiol 1991;5:1817-22.
-
16.
O-Brien AD, Tesh VL, Donohue-RoIfe A, Jackson MP, Oisnes S, Sandvig K, et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. In: Sansonetti PJ, editor. Pathogenesis of shigellosis. 180th ed. Berlin-Heidelberg: Springer-Verlag; 1992.p.66-94.
-
17.
O-Brien AD, Kaper JB. Shiga toxin-producing Escherichia coli: yesterday, today, and tomorrow. In: Kaper JB, O-Brien AD, editors. Escherichia coli O157:H7 and other Shiga toxin-producing E.coli strains. Washington: Am Soc Microbiol; 1998.p.1-11.
-
18.
Melton-Celsa AR, O-Brien AD. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect Immun 1996;64:1569-76.
-
19.
Stein PE, Boodhoo A, Tyrell GT, Brunton J, Read RJ. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E coli. Nature 1992;355:748-50.
-
20.
Frasier ME, Chernaia MM, Kozlov YV, James MNG. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nature Structural Biol 1994;1:59-64.
-
21.
Sixma TK, Kalk KH, van Zanten BA, Dauter Z, Kingma J, Witholt B, et al. Redefined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 1993;230:890-918.
-
22.
Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ. The crystal structure of pertussis toxin. Structure 1994;2:45-57.
-
23.
Suh J-K, Hovde CJ, Robertus JD. Shiga toxin attacks bacterial ribosomes as effectively as eukaryotic ribosomes. Biochemistry 1998;37:9394-8.
-
24.
Centers for Disease Control and Prevention. Addressing emerging infectious disease threats: a prevention strategy for the United States. MMWR Morb Mortal Wkly Rep 1994;43:l-18.
-
25.
O-Brien AD, Lively TA, Chen M, Rothman SW, Formal SB. Escherichia coli O157:H7 strains associated with hemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga)like cytotoxin. Lancet 1983;i:702.
-
26.
Centers for Disease Control. Isolation of E.coli O157:H7 from sporadic cases of hemorrhagic colitis - United States. MMWR Morb Mortal Wkly Rep 1982;31:580-5.
-
27.
Boyce TG, Swerdlow DL, Griffin PM. Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med 1995;333:364-8.
-
28.
Aktories K. Rho proteins: targets for bacterial toxins. Trends Microbiol 1997;5:282-8.
-
29.
Oswald E, Sugai M, Labigne A, Wu HC, Fiorentini C, Boquet P, et al. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actinstress fibers. Proc Nati Acad Sci USA 1994;91:3814-8.
-
30.
Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. Gin-63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 1997;387:725-9.
-
31.
Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 1997;387:729-33.
-
32.
Horiguchi Y, Inouc N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, et al. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gin-63 of the GTP-binding protein Rho. Proc Nati Acad Sci USA 1997;94:11623-6.
-
33.
Falbo V, Pace T, Picci L, Pizzi E, Caprioli A. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect Immun 1993;61:4909-14.
-
34.
Blum G, Falbo V, Caprioli A, Hacker J. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and -hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett 1995;126:189-96.
-
35.
Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNFI cell-binding and catalytic domains. Mol Microbiol 1997;24:1061-70.
-
36.
DeRycke J, Gonzalez EA, Blanco J, Oswald E, Blanco M,Boivin R Evidence for two types of cytotoxic necrotizingfactor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol 1990;28:694-9.
-
37.
Andreu A, Stapleton AE, Fennell C, Lockman HA, Xercavins M, Fernandez F, et al. Urovirulence determinants in Escherichia coli strains causing prostatitis. J Infect Dis 1997;176:464-9.
-
38.
Nair GB, Takeda Y. The heat stable enterotoxins. Microb Pathog 1998;24:123-31.
-
39.
So M, McCarthy BJ. Nucleotide sequence of transposon Tnl681 encoding a heat-stable toxin (ST) and its identification in enterotoxigenic Escherichia coli strains. Proc Nati Acad Sci USA 1980;77:4011-5.
-
40.
So M, Boyer HW, Betlach M, Falkow S. Molecular cloning of an Escherichia coli plasmid determinant that encodes for the production of heat-stable enterotoxin. J Bacteriol 1976;128:463-72.
-
41.
Giannella RA. Eacherichia coli beat-stable enterotoxins, guanylins, and their receptors: what are they and what do they do? J Lab Clin Med 1995;125:173-81.
-
42.
Singh BR, Li B, Read D. Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon 1995;33:1541-7.
-
43.
Jahn R, Hanson PI, Otto H, Ahnert Hilger G. Botulinum and tetanus neurotoxins: emerging tools for the study of membrane fusion. Cold Spring Harb Symp Quant Biol 1995;60:329-35.
-
44.
Henderson I, Davis T, Elmore M, Minton NP. The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press;1997.p.261-94.
-
45.
Schiavo G, Montecucco C. The structure and mode of action of botulinum and tetanus toxins. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press;1997.p.295-322.
-
46.
Kessler KR, Benecke R. Botulinum toxin: from poison toremedy. Neurotoxicology 1997;18:761-70.
-
47.
Halpern JL, Neale EA. Neurospecific binding, internalization and retrograde axonal transport. Curr Top Microbiol Immunol 1995;195:221-41.
-
48.
Arnon SS. Human tetanus and human botulism. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis, San Diego: Academic Press;1997.p.95-115.
-
49.
Rago JV, Schlievert PM. Mechanisms of pathogenesis of staphylococcal and streptococcal superantigens. Curr Top Microbiol Immunol 1998;225:81-97.
-
50.
Lee PK, Schlievert PM. Molecular genetics of pyrogenic exotoxin "superantigens" of Group A streptococci and staphylococcus. Curr Top Microbiol Immunol 1991;174:1-19.
-
51.
Schlievert PM. Searching for superantigens. Immunol Invest 1997;26:283-90.
-
52.
Bohach GA, Stauffacher CV, Ohiendorf DH, Chi Yl, Vath GM, Schlievert PM. The staphylococcal and streptococcal pyrogenic toxin family. In: Singh BR, Tu AT, editors. Natural Toxins II. New York: Plenum Press; 1996.p.131-54.
-
53.
Papageorgiou AC, Acharya KR. Superantigens as immunomodulators: recent structural insights. Structure 1997;5:991-6.
-
54.
Prasad GS, Radhakrishnan R, Mitchell DT, Earhart CA, Dinges MM, Cook WJ, et al. Refined structures of three crystal forms of toxic shock syndrome toxin-I and of a tetramutant with reduced activity. Protein Sci 1997;6:1220-7.
-
55.
Betley MJ, Borst DW, Regassa LB. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem Immunol 1992;55:1-35.
-
56.
Stevens DL. Superantigens: their role in infectious diseases. Immunol Invest 1997;26:275-81.
-
57.
Harnett MM. Analysis of G-proteins regulating signal transduction pathways. Methods Mol Biol 1994;27:199-211.
-
58.
Bokoch GM, Katada T, Northup JK, Hewlett EL, GilmanAG. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem 1983;258:2072-5.
-
59.
Neer EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995;80:249-57.
-
60.
Snider DP. The mucosal adjuvant activities of ADP-ribosylating bacterial enterotoxins. Crit Rev Immunol 1995;15:317-48.
-
61.
Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera-B subunit as oral mucosal adjuvant and antigen vector systems. Vaccine 1993;11:1179-84.
-
62.
Pastan I. Targeted therapy of cancer with recombinant immunotoxins. Biochim Biophys Acta 1997;1333:01-6.
-
63.
Ghetie MA, Ghetie V, Vitetta ES. Immunotoxins for the treatment of B-cell lymphomas. Mol Med 1997;3:420-7.
-
64.
Winkler U, Barth S, Schnell R, Diehl V, Engert A. The emerging role of immunotoxins in leukemia and lymphoma. Ann Oncol 1997;8:139-46.
-
65.
Murray LJ, Habeshaw JA, Wiels J, Greaves MF. Expression of Burkitt lymphoma-associated antigen(defined by the monoclonal antibody 38.13)on both normal and malignant germinal-centre B cells. Int J Cancer 1985;36:561-5.
-
66.
Taga S, Mangeney M, Tursz T, Wiels J. Differential regulation of glycosphingolipid biosynthesis in phenotypically distinct Burkitt-s lymphoma cell lines. Int J Cancer 1995;61:261-7.
-
67.
LaCasse EC, Saleh MT, Patterson B, Minden MD, Gariepy J. Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood 1996;88:1551-67.
-
68.
Wheeler AH. Therapeutic uses of botulinum toxin. Am Fam Physician 1997;55:541-8.
-
69.
Averbuch-Heller L, Leigh RJ. Medical treatments for abnormal eye movements: pharmacological, optical and immunological strategies. Aust NZJ Ophthalmol 1997;25:7-13.
-
70.
Carter SR, Seiff SR. Cosmetic botulinum toxin injections. Int Ophthalmol Clin 1997;37:69-79.
-
71.
Maseri A, Andreotti F. Targeting new thrombolytic regimens at specific patient groups: implications for research and cost-containment. Eur Heart J 1997;18:F28-35.
-
72.
Levine SR. Thrombolytic therapy for stroke: the new paradigm. Hosp Pract (Off Ed) 1997;32:57-73.
-
73.
Cherry JD. Comparative efficacy of acellular pertussis vaccines: an analysis of recent trials. Pediatr Infect Dis 1997;16:890-6.
-
74.
National Institutes of Health. The Jordan report: accelerated development of vaccines. 1998.
-
75.
Kraulis PJ. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Applied Crystallography 1991;24:946-50.