Аннотация
В связи с неконтролируемым ростом устойчивости микроорганизмов к действию современных противомикробных препаратов возникают опасения, что в недалеком будущем человечество может вернуться в «доантибиотическую эру», когда даже для ранее легко излечимых инфекционных заболеваний не будет существовать надежных режимов антимикробной терапии. Одним из способов решения данной проблемы является лечение инфекционных заболеваний, вызванных антибиотикорезистентными бактериальными штаммами, с использованием направленной доставки антибиотиков с помощью конъюгации последних с сидерофорами (малыми молекулами, секретируемыми микроорганизмами для поглощения жизненно необходимого Fe(III)). Модифицированный сидерофором антибиотик (сидеромицин), подобно Троянскому коню, поглощается бактериальной клеткой в виде комплекса с Fe(III), позволяя антибиотику достигнуть своей биологической мишени. В данной работе рассмотрено структурное разнообразие конъюгатов сидерофоров с антибиотиками, в первую очередь, с фокусом на строение сидеромицина, во вторую – на взаимосвязь структуры сидеромицина и его антибактериальной активности. Настоящая работа состоит из двух основных частей: в первой кратко рассмотрены основные представители различных классов сидерофоров; во второй части демонстрируется структурное разнообразие сидеромицинов и подробно обсуждается их антибактериальная активность.
АНО ВО «Научно-технологический университет «Сириус», Краснодарский край, Россия
АНО ВО «Научно-технологический университет «Сириус», Краснодарский край, Россия
АНО ВО «Научно-технологический университет «Сириус», Краснодарский край, Россия
АНО ВО «Научно-технологический университет «Сириус», Краснодарский край, Россия
АНО ВО «Научно-технологический университет «Сириус», Краснодарский край, Россия
-
1.
Hider R.C., Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27(5):637657.
DOI: 10.1039/b906679a
-
2.
Zughaier S.M., Cornelis P. Editorial: role of iron in bacterial pathogenesis. Front Cell Infect Microbiol. 2018;8:344.
DOI: 10.3389/fcimb.2018.00344
-
3.
Dertz E.A., Raymond K.N. Siderophores and transferrins. Comprehensive coordination chemistry II. 2003;8:141168.
DOI: 10.1016/B0-08-043748-6/08175-5
-
4.
D.J. Raines, T.J. Sanderson, E.J. Wilde, A.-K. Duhme-Klair. Siderophores, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2015.
DOI: 10.1016/B978-0-12-409547-2.11040-6
-
5.
Neilands J.B. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270(45):26723-26726.
DOI: 10.1074/jbc.270.45.26723
-
6.
Holden V.I., Bachman M.A. Diverging roles of bacterial siderophores during infection. Metallomics. 2015; 7(6):986-995.
DOI: 10.1039/C4MT00333K
-
7.
Peleg A.Y., de Breij A., Adams M.D., Cerqueira G.M., Mocali S., Galardini M., et al. The success of Acinetobacter species; genetic, metabolic and virulence attributes. PLoS One. 2012;7(10):e46984.
DOI: 10.1371/journal.pone.0046984
-
8.
Crumbliss A.L., Harrington J.M. Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. Adv Inorg Chem. 2009;61:179-250.
DOI: 10.1016/S08988838(09)00204-9
-
9.
Ratledge C., Dover L.G. Iron metabolism in pathogenic bacteria. Ann Rev Microbiol. 2000;54(1):881-941.
DOI: 10.1146/annurev.micro.54.1.881
-
10.
Ho Y.N., Lee H.J., Hsieh C.T., Peng C.C., Yang Y.L. Chemistry and biology of salicylcapped siderophores. Stud Nat Prod Chem. 2018;59:431490.
DOI: 10.1016/B978-0-444-64179-3.00013-X
-
11.
Swayambhu G., Bruno M., Gulick A.M., Pfeifer B.A. Siderophore natural products as pharmaceutical agents. Curr Opin Biotechnol. 2021;69:242-251.
DOI: 10.1016/j.copbio.2021.01.021
-
12.
Raymond K.N., Dertz E.A., Kim S.S. Enterobactin: an archetype for microbial iron transport. PNAS. 2003;100(7): 3584-3588.
DOI: 10.1073/pnas.0630018100
-
13.
Al Shaer D., Al Musaimi O., de la Torre B.G., Albericio F. Hydroxamate siderophores: natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur J Med Chem. 2020;208:112791.
DOI: 10.1016/j.ejmech.2020.112791
-
14.
Sajeed Ali S., Vidhale N. Bacterial siderophore and their application: a review. Int J Curr Microbiol App Sci. 2013;2(12):303-312.
-
15.
Fan D., Fang Q. Siderophores for medical applications: imaging, sensors, and therapeutics. Int J Pharm. 2021;597: 120306.
DOI: 10.1016/j.ijpharm.2021.120306
-
16.
Miethke M., Marahiel M.A. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71(3):413-451.
DOI: 10.1128/mmbr.00012-07
-
17.
Fiedler H.P., Krastel P., Muller J., Gebhardt K., Zeeck A. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett. 2001;196(2):147-151.
DOI: 10.1111/j.1574-6968.2001.tb10556.x
-
18.
May J.J., Wendrich T.M., Marahiel M.A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoateglycine-threonine trimeric ester bacillibactin. J Biol Chem. 2001;276(10):7209-7217.
DOI: 10.1074/jbc.M009140200
-
19.
Telford J.R., Raymond K.N. Amonabactin: a family of novel siderophores from a pathogenic bacterium. J Biol Inorg Chem. 1997;2(6):750-761.
DOI: 10.1007/s007750050191
-
20.
Adolphs M., Taraz K., Budzikiewicz H. Catecholate siderophores from Chryseomonas luteola. Zeitschrift für Naturforschung C. 1996;51c:281-285.
DOI: 10.1515/znc-1996-5-603
-
21.
Ehlert G., Taraz K., Budzikiewicz H. Serratiochelin, a new catecholate siderophore from Serratia marcescens. Zeitschrift für Naturforschung C. 1994;49c:11-17.
DOI: 10.1515/znc-1994-1-203
-
22.
Barelmanna I., Taraza K., Budzikiewicza H., Meyer J.M. Cepaciachelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia. Zeitschrift für Naturforschung C. 1996;51c:627-630.
DOI: 10.1515/znc-1996-9-1004
-
23.
Bergeron R.J., Weimar W.R., Dionis J.B. Demonstration of ferric Lparabactin-binding activity in the outer membrane of Paracoccus denitrificans. J Bacteriol. 1988;170(8):37113717.
DOI: 10.1128/jb.170.8.3711-3717.1988
-
24.
Baramov T., Schmid B., Ryu H., Jeong J., Keijzer K., von Eckardstein L., et al. How many O-donor groups in enterobactin does it take to bind a metal cation? Chem Eur J. 2019;25(28):6955-6962.
DOI: 10.1002/chem.201900453
-
25.
Ballas S.K., Zeidan A.M., Duong V.H., DeVeaux M., Heeney M.M. The effect of iron chelation therapy on overall survival in sickle cell disease and βthalassemia: a systematic review. Am J Hematol. 2018;93(7):943-952.
DOI: 10.1002/ajh.25103
-
26.
Merlot A.M., Kalinowski D.S., Richardson D.R. Novel chelators for cancer treatment: where are we now? Antioxid Redox Signal. 2013;18(8):973-1006.
DOI: 10.1089/ars.2012.4540
-
27.
Pawlaczyk M., Schroeder G. Deferoxamine-modified hybrid materials for direct chelation of Fe(III) ions from aqueous solutions and indication of the competitiveness of in vitro complexing toward a biological system. ACS Omega. 2021;6(23):15168-15181.
DOI: 10.1021/acsomega.1c01411
-
28.
Carver P.L. The battle for iron between humans and microbes. Curr Med Chem. 2018;25(1):85-96.
DOI: 10.2174/0929867324666170720110049
-
29.
Dhungana S., White P.S., Crumbliss A.L. Crystal structure of ferrioxamine B: a comparative analysis and implications for molecular recognition. J Biol Inorg Chem. 2001;6(8):810818.
DOI: 10.1007/s007750100259
-
30.
Van der Helm D., Poling M. The Crystal structure of ferrioxamine E. J Am Chem Soc. 1976;98(1):82-86.
DOI: 10.1021/ja00417a014
-
31.
Bergeron R.J., Xin M., Smith R.E., Wollenweber M., McManis J.S., Ludin C., et al. Total synthesis of rhizoferrin, an iron chelator. Tetrahedron. 1997;53(2):427-434.
DOI: 10.1016/S0040-4020(96)01061-7
-
32.
Drechsel H., Metzger J., Freund S., Jung G., Boelaert J.R., Winkelmann G. Rhizoferrin – a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. Biol Metals. 1991;4(4):238-243.
DOI: 10.1007/BF01141187
-
33.
Münzinger M., Taraz K., Budzikiewicz H., Drechsel H., Heymann P., Winkelmann G., et al. S,S-rhizoferrin (enantiorhizoferrin) – a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297 – the optical antipode of R,R-rhizoferrin isolated from fungi. BioMetals. 1999;12(2):189-193.
DOI: 10.1023/a:1009259118034
-
34.
Konetschny-Rapp S., Jung G., Meiwes J., Zahner H. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur J Biochem. 1990;191(1):65-74.
DOI: 10.1111/j.1432-1033.1990.tb19094.x
-
35.
Cheung J., Beasley F.C., Liu S., Lajoie G.A., Heinrichs D.E. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol Microbiol. 2009;74(3): 594-608.
DOI: 10.1111/j.1365-2958.2009.06880.x
-
36.
Madsen J.L.H., Johnstone T.C., Nolan E.M. Chemical synthesis of staphyloferrin B affords insight into the molecular structure, iron chelation, and biological activity of a polycarboxylate siderophore deployed by the human pathogen Staphylococcus aureus. J Am Chem Soc. 2015;137(28):9117-9127.
DOI: 10.1021/jacs.5b04557
-
37.
Marchetti M., De Bei O., Bettati S., Campanini B., Kovachka S., Gianquinto E., et al. Iron metabolism at the interface between host and pathogen: from nutritional immunity to antibacterial development. Int J Mol Sci. 2020;21(6):2145.
DOI: 10.3390/ijms21062145
-
38.
Miller M.C., Parkin S., Fetherston J.D., Perry R.D., DeMoll E. Crystal structure of ferricyersiniabactin, a virulence factor of Yersinia pestis. J Inorg Biochem. 2006;100(9): 14951500.
DOI: 10.1016/j.jinorgbio.2006.04.007
-
39.
Steel, A.D., Keohane C.E., Knouse K.W., Rossiter S.E., Williams S.J., Wuest W.M. Diverted total synthesis of promysalin analogs demonstrates that an iron-binding motif is responsible for its narrow-spectrum antibacterial activity. J Am Chem Soc. 2016;138(18):5833-5836.
DOI: 10.1021/jacs.6b03373
-
40.
Bose P., Harit A.K., Das R., Sau S., Iyer A.K., Kashaw S.K. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res. 2021;30(4):807-833.
DOI: 10.1007/s00044-020-02691-5
-
41.
Schwartz B.D., De Voss J.J. Structure and absolute configuration of mycobactin J. Tetrahedron Lett. 2001;42(21): 3653-3655.
DOI: 10.1016/S0040-4039(01)00531-7
-
42.
Arshad M. 1,3,4-Oxadiazole nucleus with versatile pharmacological applications: a review. Int J Pharm Sci Res. 2014;5:1124-1137.
DOI: 10.13040/IJPSR.0975-8232.5(4).1000-13
-
43.
Parikh P.H., Timaniya J.B., Patel M.J., Patel K.P. Design, synthesis, and characterization of novel substituted 1,2,4-oxadiazole and their biological broadcast. Med Chem Res. 2020;29:538-548.
DOI: 10.1007/s00044020-02505-8
-
44.
Bhoi M.N., Borad M.A., Jethava D.J., Acharya P.T., Pithawala E.A., Patel C.N., et al. Synthesis, biological evaluation and computational study of novel isoniazid containing 4HPyrimido[2,1-b]benzothiazoles derivatives. Eur J Med Chem. 2019;177:1231.
DOI: 10.1016/j.ejmech.2019.05.028
-
45.
Krátký M., Bősze S., Baranyai Z., Stolaříková J., Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg Med Chem Lett. 2017;27(23):5185-5189.
DOI: 10.1016/j.bmcl.2017.10.050
-
46.
Wilson B.R., Bogdan A.R., Miyazawa M., Hashimoto K., Tsuji Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med. 2016;22(12):10771090.
DOI: 10.1016/j.molmed.2016.10.005
-
47.
Leventhal G.E., Ackermann M., Schiessl K.T. Why microbes secrete molecules to modify their environment: the case of iron-chelating siderophores. J R Soc Interface. 2019;16(150):20180674.
DOI: 10.1098/rsif.2018.0674
-
48.
Caza M., Lépine F., Dozois C.M. Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli. Mol Microbiol. 2011;80(1):266-282.
DOI: 10.1111/j.13652958.2011.07570.x
-
49.
Klebba P.E., Newton S.M.C., Six D.A., Kumar A., Yang T., Nairn B.L., et al. Iron acquisition systems of gram-negative bacterial pathogens define TonB-dependent pathways to novel antibiotics. Chem Rev. 2021;121(9):5193-5239.
DOI: 10.1021/acs.chemrev.0c01005
-
50.
Dhungana S., Anderson D.S., Mietzner T.A., Crumbliss A.L. Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport. Biochemistry. 2005;44(28):9606-9618.
DOI: 10.1021/bi0505518
-
51.
Creutz C. Complexities of ascorbate as a reducing agent. Inorg Chem. 1981;20(12):4449-4452.
DOI: 10.1021/ic50226a088
-
52.
Millis K.K., Weaver K.H., Rabenstein D.L. Oxidation/reduction potential of glutathione. J Org Chem. 1993;58(15):4144-4146.
DOI: 10.1021/jo00067a060
-
53.
Matzanke B.F., Anemüller S., Schünemann V., Trautwein A.X., Hantke K. FhuF, part of a siderophore-reductase system. Biochemistry. 2004;43(5):1386-1392.
DOI: 10.1021/bi0357661
-
54.
Hartmann A., Braun V. Iron transport in Escherichia coli: uptake and modification of ferrichrome. J Bacteriol. 1980;143(1):246-255.
DOI: 10.1128/jb.143.1.246255.1980
-
55.
Capela D., Barloy-Hubler F., Gouzy J., Bothe G., Ampe F., Batut J., et al. Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA. 2001;98(17):9877-9882.
DOI: 10.1073/pnas.161294398
-
56.
Llamas M.A., Sparrius M., Kloet R., Jiménez C.R., Vandenbroucke-Grauls C., Bitter W. The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol. 2006;188(5):1882-1891.
DOI: 10.1128/JB.188.5.1882-1891.2006
-
57.
Harrington J.M., Crumbliss A.L. The redox hypothesis in siderophoremediated iron uptake. BioMetals. 2009; 22(4):679-689.
DOI: 10.1007/s10534-009-9233-4
-
58.
Mies K.A., Wirgau J.I., Crumbliss A.L. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. BioMetals. 2006;19(2):115-126.
DOI: 10.1007/s10534-005-4342-1
-
59.
Khasheii B., Mahmoodi P., Mohammadzadeh A. Siderophores: importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res. 2021;250:126790.
DOI: 10.1016/j.micres.2021.126790
-
60.
Ji C., Juárez-Hernández R.E., Miller M.J. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem. 2012;4(3):297-313.
DOI: 10.4155/fmc.11.191
-
61.
Braun V., Pramanik A., Gwinner T., Köberle M., Bohn E. Sideromycins: tools and antibiotics. BioMetals. 2009; 22(1):3-13.
DOI: 10.1007/s10534-008-9199-7
-
62.
Cheng A.V., Wuest, W.M. Signed, sealed, delivered: conjugate and prodrug strategies as targeted delivery vectors for antibiotics. ACS Infect Dis. 2019;5(6):816828.
DOI: 10.1021/acsinfecdis.9b00019
-
63.
Górska A., Sloderbach A., Marszałł M.P. Siderophore-drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol Sci. 2014;35(9):442449.
DOI: 10.1016/j.tips.2014.06.007
-
64.
Michailidou F., Burnett D., Sharma S.V., Van Lanen S.G., Goss R.J.M. Natural products incorporating pyrimidine nucleosides. Reference module in chemistry, molecular sciences and chemical engineering. 2020;2:500-536.
DOI: 10.1016/b978-0-12-409547-2.14797-3
-
65.
Drawz S.M., Bonomo R.A. Three decades of β-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160-201.
DOI: 10.1128/CMR.00037-09
-
66.
Hartmann A., Fiedler H.P., Braun V. Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. Eur J Biochem. 1979;99(3):517-524.
DOI: 10.1111/j.14321033.1979.tb13283.x
-
67.
Braun V., Günthner K., Hantke K., Zimmermann L. Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1983:156(1):308315.
DOI: 10.1128/jb.156.1.308-315.1983
-
68.
Duquesne S., Destoumieux-Garzón D., Peduzzi J., Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 2007;24(4):708-734.
DOI: 10.1039/b516237h
-
69.
Nolan E.M., Walsh C.T. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form “Trojan Horse” antibiotics. Biochemistry. 2008;47(35):9289-9299.
DOI: 10.1021/bi800826j
-
70.
Vértesy L., Aretz W., Fehlhaber H.W., Kogler H. Salmycin A-D, antibiotika aus Streptomyces violaceus, DSM 8286, mit siderophor-aminoglycosid-struktur. Helv Chim Acta. 1995;78(1):46-60.
DOI: 10.1002/hlca.19950780105
-
71.
Szebesczyk A., Olshvang E., Shanzer A., Carver P.L., Gumienna-Kontecka E. Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev. 2016;327-328:84-109.
DOI: 10.1016/j.ccr.2016.05.001
-
72.
Roosenberg J.M., Miller M.J. Total synthesis of the siderophore danoxamine. J Org Chem. 2000;65(16):48334838.
DOI: 10.1021/jo000050m
-
73.
Dong L., Roosenberg J.M., Miller M.J. Total synthesis of desferrisalmycin B. J Am Chem Soc. 2002;124(50): 15001-15005.
DOI: 10.1021/ja028386w
-
74.
Carrano C.J., Raymond K.N. Ferric ion sequestering agents. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J Am Chem Soc. 1979;101(18):5401-5404.
DOI: 10.1021/ja00512a047
-
75.
Karpishin T.B., Raymond K.N. The first structural characterization of a metalenterobactin complex: [V(enterobactin)]2-. Angew Chem Int Ed Engl. 1992; 31(4):466-468.
DOI: 10.1002/anie.199204661
-
76.
Kong H., Cheng W., Wei H., Yuan Y., Yang Z., Zhang X. An overview of recent progress in siderophore-antibiotic conjugates. Eur J Med Chem. 2019;182:111615.
DOI: 10.1016/j.ejmech.2019.111615
-
77.
Zheng T., Bullock J.L., Nolan E.M. Siderophore-mediated cargo delivery to the cytoplasm of Escherichia coli and Pseudomonas aeruginosa: syntheses of monofunctionalized enterobactin scaffolds and evaluation of enterobactin-cargo conjugate uptake. J Am Chem Soc. 2012;134(44):1838818400.
DOI: 10.1021/ja3077268
-
78.
Zheng T., Nolan E.M. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J Am Chem Soc. 2014;136(27):9677-9691.
DOI: 10.1021/ja503911p
-
79.
Negash K.H., Norris J.K.S., Hodgkinson J.T. Siderophoreantibiotic conjugate design: new drugs for bad bugs? Molecules. 2019;24(18):3314.
DOI: 10.3390/molecules24183314
-
80.
Chairatana P., Zheng T., Nolan E.M. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chem Sci. 2015;6(8):4458.
DOI: 10.1039/c5sc00962f
-
81.
Kjeldsen L., Johnsen A.H., Sengelov H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425-10432.
DOI: 10.1016/s00219258(18)82217-7
-
82.
Cowland J.B., Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45(1):1723.
DOI: 10.1006/geno.1997.4896
-
83.
Yang J., Goetz D., Li J., Wang W., Mori K., Setlik D., et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10(5):1045-1056.
DOI: 10.1016/s10972765(02)00710-4
-
84.
Raffatellu M., George M.D., Akiyama Y., Hornsby M.J., Nuccio S.P., Paixao T.A., et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe. 2009;5(5):476-486.
DOI: 10.1016/j.chom.2009.03.011
-
85.
Lam M.M.C., Wyres K.L., Judd L.M., Wick R.R., Jenney A., Brisse S., et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018;10(1):77.
DOI: 10.1186/s13073-018-0587-5
-
86.
Neumann W., Nolan E.M. Evaluation of a reducible disulfide linker for siderophoremediated delivery of antibiotics. J Biol Inorg Chem. 2018;23(7):1025-1036.
DOI: 10.1007/s00775-018-1588-y
-
87.
Wu D., Ding Y., Yao K., Gao W., Wang Y. Antimicrobial resistance Analysis of clinical Escherichia coli isolates in neonatal ward. Front Pediatr. 2021;9:1-7.
DOI: 10.3389/fped.2021.670470
-
88.
Karczmarczyk M., Martins M., Quinn T., Leonard N., Fanning S. Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals. Appl Environ Microbiol. 2011;77(20):7113-7120.
DOI: 10.1128/AEM.0060011
-
89.
Ji C., Miller P.A., Miller M.J. Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. J Am Chem Soc. 2012;134(24):9898-9901.
DOI: 10.1021/ja303446w
-
90.
Fardeau S., Dassonville-Klimpt A., Audic N., Sasaki A., Pillon M., Baudrin E., et al. Synthesis and antibacterial activity of catecholate-ciprofloxacin conjugates. Bioorg Med Chem. 2014;22(15):4049-4060.
DOI: 10.1016/j.bmc.2014.05.067
-
91.
Zheng T., Nolan E.M. Evaluation of (acyloxy)alkyl ester linkers for antibiotic release from siderophore-antibiotic conjugates. Bioorg Med Chem Lett. 2015;25(21):49874991.
DOI: 10.1016/j.bmcl.2015.02.034
-
92.
Gupta D., Gupta S.V., Lee K.D., Amidon G.L. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers. Mol Pharmaceutics. 2009;6(5):1604-1611.
DOI: 10.1021/mp900084v
-
93.
Ong S.A., Peterson T., Neilands J.B. Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem. 1979;254:1860-1865.
DOI: 10.1016/s00219258(17)37736-0
-
94.
Corbin J.L., Bulen W.A. Isolation and identification of 2,3dihydroxybenzoic acid and 2-N,6-N-di(2,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 1969;8(3):757-762.
DOI: 10.1021/bi00831a002
-
95.
Ghosh A., Ghosh M., Niu C., Malouin F., Moellmann U., Miller M.J. Iron transportmediated drug delivery using mixed-ligand siderophore-β-lactam conjugates. Chem Biol. 1996;3(12):1011-1019.
DOI: 10.1016/S10745521(96)90167-2
-
96.
Liu R., Miller P.A., Vakulenko S.B., Stewart N.K., Boggess W.C., Miller M.J. A synthetic dual drug sideromycin induces Gram-negative bacteria to commit suicide with a Gram-positive antibiotic. J Med Chem. 2018;61(21):38453854.
DOI: 10.1021/acs.jmedchem.8b00218
-
97.
Weinstein E.A., Yano T., Li L.S., Avarbock D., Avarbock A., Helm D., et al. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci USA. 2005;102(12):4548-4553.
DOI: 10.1073/pnas.0500469102
-
98.
Alsaad N., Wilffert B., Van Altena R., De Lange W.C.M., Van Der Werf T.S., Kosterink J.G.W., et al. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis. Eur Respir J. 2014;43(3):884-897.
DOI: 10.1183/09031936.00113713
-
99.
Ordway D., Viveiros M., Leandro C., Bettencourt R., Almeida J., Martins M., et al. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003;47(3):917-922.
DOI: 10.1128/AAC.47.3.917-922.2003
-
100.
Amaral L., Kristiansen J.E., Abebe L.S., Millett W. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J Antimicrob Chemother. 1996;38(6):1049-1053.
DOI: 10.1093/jac/38.6.1049
-
101.
Martins M., Schelz Z., Martins A., Molnar J., Hajös G., Riedl Z., et al. In vitro and ex vivo activity of thioridazine derivatives against Mycobacterium tuberculosis. Int J Antimicrob Agents. 2007;29(3):338-340.
DOI: 10.1016/j.ijantimicag.2006.10.013
-
102.
Amaral L., Viveiros M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int J Antimicrob Agents. 2012;39(5):376-380.
DOI: 10.1016/j.ijantimicag.2012.01.012
-
103.
Tarapdar A., Norris J.K.S., Sampson O., Mukamolova G., Hodgkinson J.T. The design and synthesis of an antibacterial phenothiazine-siderophore conjugate. Beilstein J Org Chem. 2018;14:2646-2650.
DOI: 10.3762/bjoc.14.242
-
104.
Paulen A., Gasser V., Hoegy F., Perraud Q., Pesset B., Schalk I.J., et al. Synthesis and antibiotic activity of oxazolidinone-catechol conjugates against Pseudomonas aeruginosa. Org Biomol Chem. 2015;13(47):1156711579.
DOI: 10.1039/c5ob01859e
-
105.
Ito A., Nishikawa T., Matsumoto S., Yoshizawa H., Sato T., Nakamura R., et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(12):7396-7401.
DOI: 10.1128/AAC.01405-16
-
106.
Hildebrand D., Böhringer J., Körner E., Chiriac U., Förmer S., Sähr A., et al. Cefiderocol protects against cytokine-and endotoxin-induced disruption of vascular endothelial cell integrity in an in vitro experimental model. Antibiotics. 2022;11:581.
DOI: 10.3390/antibiotics11050581
-
107.
Mccreary E.K., Heil E.L., Tamma P.D. New perspectives on antimicrobial agents: cefiderocol. Antimicrob Agents Chemother. 2021;65(8):e02171-20.
DOI: 10.1128/AAC.02171-20
-
108.
Wang C., Yang D., Wang Y., Ni W. Cefiderocol for the treatment of multidrug-resistant Gram-negative bacteria: a systematic review of currently available evidence. Front Pharmacol. 2022;13:896971.
DOI: 10.3389/fphar.2022.896971
-
109.
Matsunaga Y., Echols R., Katsube T., Yamano Y., Ariyasu M., Nagata T. Cefiderocol (S649266) for nosocomial pneumonia caused by Gram-negative pathogens: study design of APEKS-NP, a phase 3 double-blind parallel-group randomized clinical trial. B42. CRITICAL CARE: THE FEVER – INFECTIONS IN THE ICU. 2018;A3290-A3290.
DOI: 10.1164/ajrccmconference.2018.197.1_MeetingAbstracts.A3290
-
110.
Nordmann P., Shields R.K., Doi Y., Takemura M., Echols R., Matsunaga Y., et al. Mechanisms of reduced susceptibility to cefiderocol among isolates from the CREDIBLE-CR and APEKS-NP clinical trials. Microb Drug Resist. 2022;28(4):398-407.
DOI: 10.1089/mdr.2021.0180
-
111.
Zhanel G.G., Golden A.R., Zelenitsky S., Wiebe K., Lawrence C.K., Adam H.J., et al. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant Gram-negative bacilli. Drugs. 2019;79(3):271289.
DOI: 10.1007/s40265-0191055-2
-
112.
El-Lababidi R.M., Rizk J.G. Cefiderocol: a siderophore cephalosporin. Ann Pharmacother. 2020;54:1215-1231.
DOI: 10.1177/1060028020929988
-
113.
Laurent D. Developments for the treatment of invasive infections due to multidrug-resistant Acinetobacter baumannii. J Respir Infect. 2019;3:3.
DOI: 10.18297/jri/vol3/iss2/3
-
114.
Nakamura R., Oota M., Matsumoto S., Sato T., Yamano Y. In vitro activity and in vivo efficacy of cefiderocol against Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2021;65(4):e01436-20.
DOI: 10.1128/AAC.01436-20
-
115.
Prasad N.K., Seiple I.B., Cirz R.T., Rosenberg O.S. Leaks in the pipeline: a failure analysis of Gram-negative antibiotic development from 2010 to 2020. Antimicrob Agents Chemother. 2022;66(5):e00054-22.
DOI: 10.1128/aac.00054-22
-
116.
Wright H., Bonomo R.A., Paterson D.L. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23(10):704712.
DOI: 10.1016/j.cmi.2017.09.001
-
117.
Tenero D., Farinola N., Berkowitz E.M., Tiffany C.A., Qian Y., Xue Z., et al. Pharmacokinetics, safety, and tolerability evaluation of single and multiple doses of GSK3342830 in healthy volunteers. Clin Pharmacol Drug Dev. 2019;8(6):754-764.
DOI: 10.1002/cpdd.637
-
118.
Koeth L.M., DiFranco-Fisher J.M., Scangarella-Oman N.E., Miller L.A. Analysis of MIC and disk diffusion testing variables for gepotidacin and comparator agents against select bacterial pathogens. J Clin Microbiol. 2017;55(6):1767-1777.
DOI: 10.1128/JCM.02366-16
-
119.
Kong Q., Yang Y. Recent advances in antibacterial agents. Bioorg Med Chem Lett. 2021;35:127799.
DOI: 10.1016/j.bmcl.2021.127799
-
120.
Page M.G.P. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin Infect Dis. 2019;69(Suppl. 7):S529-S537.
DOI: 10.1093/cid/ciz825
-
121.
Wencewicz T.A., Möllmann U., Long T.E., Miller M.J. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. BioMetals. 2009;22(4):633-648,
DOI: 10.1007/s10534-009-9218-3
-
122.
Wencewicz T.A., Long T.E., Möllmann U., Miller M.J. Trihydroxamate siderophorefluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjugate Chem. 2013;24(3):473-486.
DOI: 10.1021/bc300610f
-
123.
Milstien S., Cohen L.A. Stereopopulation control. I. Rate enhancement in the lactonizations of o-hydroxyhydrocinnamic acids. J Am Chem Soc. 1972;94(26):91589165.
DOI: 10.1021/ja00781a029
-
124.
Greenwald R.B., Choe Y.H., Conover C.D., Shum K., Wu D., Royzen M. Drug delivery systems based on trimethyl lock lactonization: poly(ethylene glycol) prodrugs of aminocontaining compounds. J Med Chem. 2000;43(3):475-487.
DOI: 10.1021/jm990498j
-
125.
Houghton T.J., Tanaka K.S.E., Kang T., Dietrich E., Lafontaine Y., Delorme D., et al. Linking bisphosphonates to the free amino groups in fluoroquinolones: preparation of osteotropic prodrugs for the prevention of osteomyelitis. J Med Chem. 2008;51(21):6955-6969.
DOI: 10.1021/jm801007z
-
126.
Ji C., Miller M.J. Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg Med Chem. 2012;20(12):38283836.
DOI: 10.1016/j.bmc.2012.04.034
-
127.
Yu Z., Tang J., Khare T., Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: can essential oils come to the rescue? Fitoterapia. 2020;140:104433.
DOI: 10.1016/j.fitote.2019.104433
-
128.
Ghosh M., Miller M.J. Design, synthesis, and biological evaluation of isocyanurate-based antifungal and macrolide antibiotic conjugates: iron transport-mediated drug delivery. Bioorg Med Chem. 1995;3(11):1519-1525.
DOI: 10.1016/0968-0896(95)00134-3
-
129.
Lu Y., Miller M.J. Syntheses and studies of multiwarhead siderophore5fluorouridine conjugates. Bioorg Med Chem. 1999;7(12):3025-3038.
DOI: 10.1016/S09680896(99)00248-5
-
130.
Rivault F., Liébert C., Burger A., Hoegy F., Abdallah M.A., Schalk I.J., et al. Synthesis of pyochelin-norfloxacin conjugates. Bioorg Med Chem Lett. 2007;17(3):640-644.
DOI: 10.1016/j.bmcl.2006.11.005
-
131.
Hennard C., Truong Q.C., Desnottes J.F., Paris J.M., Moreau N.J., Abdallah M.A. Synthesis and activities of pyoverdin-quinolone adducts: a prospective approach to a specific therapy against Pseudomonas aeruginosa. J Med Chem. 2001;44(13):2139-2151.
DOI: 10.1021/jm990508g
-
132.
Noël S., Gasser V., Pesset B., Hoegy F., Rognan D., Schalk I.J., et al. Synthesis and biological properties of conjugates between fluoroquinolones and a N3′′functionalized pyochelin. Org Biomol Chem. 2011;9(24):8288-8300.
DOI: 10.1039/c1ob06250f
-
133.
Götz F., Perconti S., Popella P., Werner R., Schlag M. Epidermin and gallidermin: staphylococcal lantibiotics. Int J Med Microbiol. 2014;304(1):63-71.
DOI: 10.1016/j.ijmm.2013.08.012
-
134.
Willey J.M., Van Der Donk W.A. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61(1):477-501.
DOI: 10.1146/annurev.micro.61.080706.093501
-
135.
Yoganathan S., Sit C.S., Vederas J.C. Chemical synthesis and biological evaluation of gallidermin-siderophore conjugates. Org Biomol Chem. 2011;9(7):2133-2141.
DOI: 10.1039/c0ob00846j
-
136.
Paulen A., Hoegy F., Roche B., Schalk I.J., Mislin G.L.A. Synthesis of conjugates between oxazolidinone antibiotics and a pyochelin analogue. Bioorg Med Chem Lett. 2017;27(21):48674870.
DOI: 10.1016/j.bmcl.2017.09.039
-
137.
Murphy-Benenato K.E., Dangel B., Davis H.E., DurandRéville T.F., Ferguson A.D., Gao N., et al. SAR and structural analysis of siderophore-conjugated monocarbam inhibitors of Pseudomonas aeruginosa PBP3. ACS Med Chem Lett. 2015;6(5):537-542.
DOI: 10.1021/acsmedchemlett.5b00026
-
138.
Flanagan M.E., Brickner S.J., Lall M., Casavant J., Deschenes L., Finegan S.M., et al. Preparation, gramnegative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med Chem Lett. 2011;2(5):385-390.
DOI: 10.1021/ml200012f
-
139.
Hofer B., Dantier C., Gebhardt K., Desarbre E., Schmitthoffmann A., Page M.G.P. Combined effects of the siderophore monosulfactam BAL30072 and carbapenems on multidrug-resistant Gram-negative bacilli. J Antimicrob Chemother. 2013;68(5):1120-1129.
DOI: 10.1093/jac/dks527
-
140.
Mushtaq S., Woodford N., Hope R., Adkin R., Livermore D.M. Activity of BAL30072 alone or combined with β-lactamase inhibitors or with meropenem against carbapenem-resistant Enterobacteriaceae and nonfermenters. J Antimicrob Chemother. 2013;68(7):16011608.
DOI: 10.1093/jac/dkt050
-
141.
Tomaras A.P., Crandon J.L., McPherson C.J., Nicolau D.P. Potentiation of antibacterial activity of the MB-1 siderophoremonobactam conjugate using an efflux pump inhibitor. Antimicrob Agents Chemother. 2015;59(4):2439-2442.
DOI: 10.1128/AAC.04172-14
-
142.
Tillotson G.S. Trojan horse antibiotics – a novel way to circumvent gramnegative bacterial resistance? Infect Dis (Auckl). 2016;9:45-52.
DOI: 10.4137/idrt.s31567
-
143.
McPherson C.J., Aschenbrenner L.M., Lacey B.M., Fahnoe K.C., Lemmon M.M., Finegan S.M., et al. Clinically relevant Gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophoreconjugated monocarbam. Antimicrob Agents Chemother. 2012;56(12):6334-6342.
DOI: 10.1128/AAC.01345-12
-
144.
Han S., Zaniewski R.P., Marr E.S., Lacey B.M., Tomaras A.P., Evdokimov A., et al. Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2010;107(51):2200222007.
DOI: 10.1073/pnas.1013092107
-
145.
Page M.G.P., Dantier C., Desarbre E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-negative bacilli. Antimicrob Agents Chemother. 2010;54(6):22912302.
DOI: 10.1128/AAC.01525-09
-
146.
Tomaras A.P., Crandon J.L., McPherson C.J., Banevicius M.A., Finegan S.M., Irvine R.L., et al. Adaptationbased resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(9):4197-4207.
DOI: 10.1128/AAC.00629-13
-
147.
Paech F., Messner S., Spickermann J., Wind M., SchmittHoffmann A.H., Witschi A.T., et al. Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072. Arch Toxicol. 2017;91(11):36473662.
DOI: 10.1007/s00204-017-1994-x
-
148.
Oh S.H., Park H.S., Kim H.S., Yun J.Y., Oh K., Cho Y.L., et al. Antimicrobial activities of LCB10-0200, a novel siderophore cephalosporin, against the clinical isolates of Pseudomonas aeruginosa and other pathogens. Int J Antimicrob Agents. 2017;50(6):700-706.
DOI: 10.1016/j.ijantimicag.2017.06.001
-
149.
Nguyen L.P., Park C.S., Pinto N.A., Lee H., Seo H.S., Vu T.N., et al. In vitro activity of a novel siderophorecephalosporin LCB10-0200 (GT-1), and LCB100200/avibactam, against carbapenem-resistant Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa strains at a tertiary hospital in Korea. Pharmaceuticals. 2021;14:370.
DOI: 10.3390/ph14040370
-
150.
Nguyen L.P., Pinto N.A., Vu T.N., Lee H., Cho Y.L., Byun J.H., et al. In vitro activity of a novel siderophorecephalosporin, GT-1 and serine-type β-lactamase inhibitor, GT055, against Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. Panel strains. Antibiotics. 2020;9(5):267.
DOI: 10.3390/antibiotics9050267
-
151.
Halasohoris S.A., Scarff J.M., Pysz L.M., Lembirik S., Lemmon M.M., Biek D., et al. In vitro and in vivo activity of GT-1, a novel siderophore cephalosporin, and GT-055, a broad-spectrum β-lactamase inhibitor, against biothreat and ESKAPE pathogens. J Antibiot. 2021;74(12):884892.
DOI: 10.1038/s41429-021-00472-9
-
152.
Butler M.S., Paterson D.L. Antibiotics in the clinical pipeline in October 2019. J Antibiot. 2020;73:329-364.
DOI: 10.1038/s41429-020-0291-8
-
153.
Wencewicz T.A., Miller M.J. Biscatecholate-monohydroxamate mixed ligand siderophore-carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii. J Med Chem. 2013; 56(10):4044-4052.
DOI: 10.1021/jm400265k
-
154.
Ghosh M., Miller M.J. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore – vancomycin conjugates. Bioorg Med Chem. 1996;4(1):43-48.
DOI: 10.1016/0968-0896(95)00161-1
-
155.
Kumar A., Augustine D., Sudhindran S., Kurian A.M., Dinesh K.R., Karim S., et al. Weissella confusa: a rare cause of vancomycinresistant Gram-positive bacteraemia. J Med Microbiol. 2011;60(10):1539-1541.
DOI: 10.1099/jmm.0.027169-0
-
156.
Pogliano J., Pogliano N., Silverman J.A. Daptomycinmediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol. 2012;194(17):4494-4504.
DOI: 10.1128/JB.00011-12
-
157.
Taylor S.D., Palmer M. The action mechanism of daptomycin. Bioorg Med Chem. 2016;24(24):62536268.
DOI: 10.1016/j.bmc.2016.05.052
-
158.
Ghosh M., Miller P.A., Möllmann U., Claypool W.D., Schroeder V.A., Wolter W.R., et al. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J Med Chem. 2017;60(11):4577-4583.
DOI: 10.1021/acs.jmedchem.7b00102
-
159.
Lamont I.L., Martin L.W., Sims T., Scott A., Wallace M. Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa. JBacteriol. 2006;188(8):3149-3152.
DOI: 10.1128/JB.188.8.3149-3152.2006
-
160.
Meyer J.M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., et al. Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology. 1997;143(1):35-43.
DOI: 10.1099/00221287-143-1-35
-
161.
Voulhoux R., Filloux A., Schalk I.J. Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J Bacteriol. 2006;188(9):3317-3323.
DOI: 10.1128/JB.188.9.3317-3323.2006
-
162.
Visca P., Imperi F., Lamont I.L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007;15(1):22-30.
DOI: 10.1016/j.tim.2006.11.004
-
163.
Kinzel O., Tappe R., Gerus I., Budzikiewicz H. The synthesis and antibacterial activity of two pyoverdin-ampicillin conjugates, entering Pseudomonas aeruginosa via the pyoverdinmediated iron uptake pathway. J Antibiot. 1998;51(5):499-507.
DOI: 10.7164/antibiotics.51.499
-
164.
Kinzel O., Budzikiewicz H. Synthesis and biological evaluation of a pyoverdin-β-lactam conjugate: a new type of arginine-specific cross-linking in aqueous solution. J Peptide Res. 1999;53(6):618-625.
DOI: 10.1034/j.13993011.1999.00053.x
-
165.
Miller M.J., Walz A.J., Zhu H., Wu C., Moraski G., Möllmann U., et al. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc. 2011;133(7):2076-2079.
DOI: 10.1021/ja109665t
-
166.
Wang J., Xu C., Wong Y.K., Li Y., Liao F., Jiang T., et al. Artemisinin, the magic drug discovered from traditional chinese medicine. Engineering. 2019;5(1):32-39.
DOI: 10.1016/j.eng.2018.11.011
-
167.
Arsenault P., Wobbe K., Weathers P. Recent advances in artemisinin production through heterologous expression. Curr Med Chem. 2008;15(27):2886-2896.
DOI: 10.2174/092986708786242813