Аннотация
В настоящее время недостаточно доказательств необходимости широкого эмпирического использования антимикробных препаратов (АМП) у большинства амбулаторных и госпитализированных больных новой коронавирусной инфекцией (COVID-19), так как общая доля вторичных бактериальных инфекций при ней достаточно низкая. В этом обзоре литературы обобщены данные об изменении антибиотикорезистентности в период пандемии COVID-19, особенно среди нозокомиальных возбудителей группы ESKAPE. Также обсуждаются другие последствия чрезмерного применения АМП у больных COVID-19, включая развитие инфекции, вызванной Clostridioides difficile, а также нежелательные эффекты АМП.
ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, Саратов, Россия
ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, Саратов, Россия
-
1.
Clancy C.J., Nguyen M.H. Coronavirus Disease 2019, superinfections, and antimicrobial development: what can we expect? Clin Infect Dis. 2020;71(10):2736-2743.
DOI: 10.1093/cid/ciaa524
-
2.
Lehmann C.J., Pho M.T., Pitrak D., Ridgway J.P., Pettit N.N. Community-acquired coinfection in Coronavirus Disease 2019: a retrospective observational experience. Clin Infect Dis. 2021;72(8):1450-1452.
DOI: 10.1093/cid/ciaa902
-
3.
Langford B.J., So M., Raybardhan S., Leung V., Westwood D., MacFadden D.R., et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020;26(12):1622-1629.
DOI: 10.1016/j.cmi.2020.07.016
-
4.
Synopalnikov A.I. COVID-19 pandemic is a «pandemic» of antimicrobial therapy. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2021;23(1):5-15. Russian. (Синопальников А.И. Пандемия COVID-19 – "пандемия" антибактериальной терапии. Клиническая микробиология и антимикробная химиотерапия. 2021;23(1):5-15.)
DOI: 10.36488/cmac.2021.1.5-15
-
5.
Rawson T.M., Moore L.S.P., Zhu N., Ranganathan N., Skolimowska K., Gilchrist M., et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71(9):2459-2468.
DOI: 10.1093/cid/ciaa530
-
6.
Langford B.J., So M., Raybardhan S., Leung V., Soucy J.R., Westwood D., et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520-531.
DOI: 10.1016/j.cmi.2020.12.018
-
7.
Rodríguez-Baño J., Rossolini G.M., Schultsz C., Tacconelli E., Murthy S., Ohmagari N., et al. Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans R Soc Trop Med Hyg. 2021;115(10):1122-1129.
DOI: 10.1093/trstmh/trab048
-
8.
Martin A.J., Shulder S., Dobrzynski D., Quartuccio K., Pillinger K.E. Antibiotic use and associated risk factors for antibiotic prescribing in COVID-19 hospitalized patients. J Pharm Pract. 2021:8971900211030248.
DOI: 10.1177/08971900211030248
-
9.
Kubin C.J., McConville T.H., Dietz D., Zucker J., May M., Nelson B., et al. Characterization of bacterial and fungal infections in hospitalized patients with Coronavirus Disease 2019 and factors associated with health care-associated infections. Open Forum Infect Dis. 2021;8(6):ofab201.
DOI: 10.1093/ofid/ofab201
-
10.
Chedid M., Waked R., Haddad E., Chetata N., Saliba G., Choucair J. Antibiotics in treatment of COVID-19 complications: a review of frequency, indications, and efficacy. J Infect Public Health. 2021;14(5):570-576.
DOI: 10.1016/j.jiph.2021.02.001
-
11.
Baskaran V., Lawrence H., Lansbury L.E., Webb K., Safavi S., Zainuddin N.I., et al. Co-infection in critically ill patients with COVID-19: an observational cohort study from England. J Med Microbiol. 2021;70(4):001350.
DOI: 10.1099/jmm.0.001350
-
12.
Wang L., Amin A.K., Khanna P., Aali A., McGregor A., Bassett P., et al. An observational cohort study of bacterial co-infection and implications for empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North West London. J Antimicrob Chemother. 2021;76(3):796803.
DOI: 10.1093/jac/dkaa475
-
13.
Moretto F., Sixt T., Devilliers H., Abdallahoui M., Eberl I., Rogier T., et al. Is there a need to widely prescribe antibiotics in patients hospitalized with COVID-19? Int J Infect Dis. 2021;105:256-260.
DOI: 10.1016/j.ijid.2021.01.051
-
14.
Suranadi I.W., Sucandra I.M.A.K., Fatmawati N.N.D., Wisnawa A.D.F. A retrospective analysis of the bacterial infections, antibiotic use, and mortality predictors of COVID-19 patients. Int J Gen Med. 2022;15:3591-3603.
DOI: 10.2147/IJGM.S351180
-
15.
Coenen S., de la Court J.R., Buis D.T.P., Meijboom L.J., Schade R.P., Visser C.E., et al. Low frequency of community-acquired bacterial co-infection in patients hospitalized for COVID-19 based on clinical, radiological and microbiological criteria: a retrospective cohort study. Antimicrob Resist Infect Control. 2021;10(1):155.
DOI: 10.1186/s13756-021-01024-4
-
16.
d'Humières C., Patrier J., Lortat-Jacob B., Tran-Dinh A., Chemali L., Maataoui N., et al. Two original observations concerning bacterial infections in COVID-19 patients hospitalized in intensive care units during the first wave of the epidemic in France. PLoS One. 2021;16(4):e0250728.
DOI: 10.1371/journal.pone.0250728
-
17.
Stevens R.W., Jensen K., O'Horo J.C., Shah A. Antimicrobial prescribing practices at a tertiary-care center in patients diagnosed with COVID-19 across the continuum of care. Infect Control Hosp Epidemiol. 2021;42(1):89-92.
DOI: 10.1017/ice.2020.370
-
18.
Mustafa L., Tolaj I., Baftiu N., Fejza H. Use of antibiotics in COVID-19 ICU patients. J Infect Dev Ctries. 2021;15(4):501-505.
DOI: 10.3855/jidc.14404
-
19.
Karoli N.A., Aparkina A.V., Grigoryeva E.V., Magdeeva N.A., Nikitina N.M., Smirnova N.D., Rebrov A.P. Antibacterial therapy of patients with COVID-19 during the outpatient and inpatient stages. Antibiotiki i khimioterapia. 2022;67(112):24-31. Russian. (Кароли Н.А., Апаркина А.В., Григорьева Е.В., Магдеева Н.А., Никитина Н.М., Смирнова Н.Д., Ребров А.П. Антибактериальная терапия пациентов с COVID-19 на амбулаторном и стационарном этапах. Антибиотики и химиотерапия. 2022;67(1-2):24-31.)
DOI: 10.37489/0235-2990-2022-67-1-2-24-31
-
20.
Cong W., Poudel A.N., Alhusein N., Wang H., Yao G., Lambert H. Antimicrobial use in COVID-19 patients in the first phase of the SARS-CoV-2 pandemic: a scoping review. Antibiotics (Basel). 2021;10(6):745.
DOI: 10.3390/antibiotics10060745
-
21.
Mah-E-Muneer S., Hassan M.Z., Biswas M.A.A.J., Rahman F., Akhtar Z., Das P., et al. Use of antimicrobials among suspected COVID-19 patients at selected hospitals, Bangladesh: findings from the first wave of COVID-19 pandemic. Antibiotics (Basel). 2021;10(6):738.
DOI: 10.3390/antibiotics10060738
-
22.
Nieuwlaat R., Mbuagbaw L., Mertz D., Burrows L.L., Bowdish D.M.E., Moja L., et al. Coronavirus Disease 2019 and antimicrobial resistance: parallel and interacting health emergencies. Clin Infect Dis. 2021;72(9):1657-1659.
DOI: 10.1093/cid/ciaa773
-
23.
van Duin D., Barlow G., Nathwani D. The impact of the COVID-19 pandemic on antimicrobial resistance: a debate. JAC Antimicrob Resist. 2020;2(3):dlaa053.
DOI: 10.1093/jacamr/dlaa053
-
24.
Rizvi S.G., Ahammad S.Z. COVID-19 and antimicrobial resistance: a cross-study. Sci Total Environ. 2022;807(Pt 2): 150873.
DOI: 10.1016/j.scitotenv.2021.150873
-
25.
Owoicho O., Tapela K., Djomkam Zune A.L., Nghochuzie N.N., Isawumi A., Mosi L. Suboptimal antimicrobial stewardship in the COVID-19 era: is humanity staring at a postantibiotic future? Future Microbiol. 2021;16:919-925.
DOI: 10.2217/fmb-2021-0008
-
26.
Lucien M.A.B., Canarie M.F., Kilgore P.E., Jean-Denis G., Fénélon N., Pierre M., et al. Antibiotics and antimicrobial resistance in the COVID-19 era: perspective from resourcelimited settings. Int J Infect Dis. 2021;104:250-254.
DOI: 10.1016/j.ijid.2020.12.087
-
27.
Ansari S., Hays J.P., Kemp A., Okechukwu R., Murugaiyan J., Ekwanzala M.D., et al. The potential impact of the COVID-19 pandemic on global antimicrobial and biocide resistance: an AMR Insights global perspective. JAC Antimicrob Resist. 2021;3(2):dlab038.
DOI: 10.1093/jacamr/dlab038
-
28.
Pelfrene E., Botgros R., Cavaleri M. Antimicrobial multidrug resistance in the era of COVID-19: a forgotten plight? Antimicrob Resist Infect Control. 2021;10(1):21.
DOI: 10.1186/s13756-021-00893-z
-
29.
Pierce J., Stevens M.P. COVID-19 and antimicrobial stewardship: lessons learned, best practices, and future implications. Int J Infect Dis. 2021;113:103-108.
DOI: 10.1016/j.ijid.2021.10.001
-
30.
World Health Organization. Antimicrobial Resistance. 2020. Available at: www.who.int/news-room/factsheets/detail/antimicrobial-resistance. Accessed June 29, 2022.
-
31.
Tadesse B.T., Ashley E.A., Ongarello S., Havumaki J., Wijegoonewardena M., González I.J., et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17(1):616.
DOI: 10.1186/s12879-017-2713-1
-
32.
Mustapha A., Nikau J., Isa T. COVID-19 and antibiotic resistance: parallel pandemics and different intercessions. Microbes and Infectious Diseases. 2021;2(1):15-24.
DOI: 10.21608/mid.2020.49732.1087
-
33.
Lai C.C., Chen S.Y., Ko W.C., Hsueh P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57(4):106324.
DOI: 10.1016/j.ijantimicag.2021.106324
-
34.
Adebisi Y.A., Alaran A.J., Okereke M., Oke G.I., Amos O.A., Olaoye O.C., еt al. COVID-19 and antimicrobial resistance: a review. Infect Dis (Auckl). 2021;14: 11786337211033870.
DOI: 10.1177/11786337211033870
-
35.
World Health Organization. Record Response to WHO’s call for Antimicrobial Resistance Surveillance Reports in 2020. Available at: www.who.int/news/item/09-062021-record-response-to-who-s-call-for-antimicrobialresistance-surveillance-reports-in-2020. Accessed October 15, 2021.
-
36.
Rezasoltani S., Yadegar A., Hatami B., Asadzadeh Aghdaei H., Zali M.R. Antimicrobial resistance as a hidden menace lurking behind the COVID-19 outbreak: the global impacts of too much hygiene on AMR. Front Microbiol. 2020;11:590683.
DOI: 10.3389/fmicb.2020.590683
-
37.
Founou R.C., Blocker A.J., Noubom M., Tsayem C., Choukem S.P., Dongen M.V., et al. The COVID-19 pandemic: a threat to antimicrobial resistance containment. Future Sci OA. 2021;7(8):FSO736.
DOI: 10.2144/fsoa2021-0012
-
38.
Mirzaei R., Goodarzi P., Asadi M., Soltani A., Aljanabi H.A.A., Jeda A.S., et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020;72(10):2097-2111.
DOI: 10.1002/iub.2356
-
39.
Vijay S., Bansal N., Rao B.K., Veeraraghavan B., Rodrigues C., Wattal C., et al. Secondary infections in hospitalized COVID-19 patients: Indian experience. Infect Drug Resist. 2021;14:1893-1903.
DOI: 10.2147/IDR.S299774
-
40.
Rusic D., Vilovic M., Bukic J., Leskur D., Seselja Perisin A., Kumric M., et al. Implications of COVID-19 pandemic on the emergence of antimicrobial resistance: adjusting the response to future outbreaks. Life (Basel). 2021;11(3):220.
DOI: 10.3390/life11030220
-
41.
Patel A., Emerick M., Cabunoc M.K., Williams M.H., Preas M.A., Schrank G., et al. Rapid spread and control of multidrug-resistant gram-negative bacteria in COVID-19 patient care units. Emerg Infect Dis. 2021;27(4):12341237.
DOI: 10.3201/eid2704.204036
-
42.
Magnasco L., Mikulska M., Giacobbe D.R., Taramasso L., Vena A., Dentone C., et al. Spread of carbapenem-resistant Gram-negatives and Candida auris during the COVID-19 pandemic in critically ill patients: one step back in antimicrobial stewardship? Microorganisms. 2021;9(1):95.
DOI: 10.3390/microorganisms9010095
-
43.
Polly M., de Almeida B.L., Lennon R.P., Cortês M.F., Costa S.F., Guimarães T. Impact of the COVID-19 pandemic on the incidence of multidrug-resistant bacterial infections in an acute care hospital in Brazil. Am J Infect Control. 2022;50(1):32-38.
DOI: 10.1016/j.ajic.2021.09.018
-
44.
Jeon K., Jeong S., Lee N., Park M.J., Song W., Kim H.S., et al. Impact of COVID-19 on antimicrobial consumption and spread of multidrug-resistance in bacterial infections. Antibiotics (Basel). 2022;11(4):535.
DOI: 10.3390/antibiotics11040535
-
45.
Sharifipour E., Shams S., Esmkhani M., Khodadadi J., Fotouhi-Ardakani R., Koohpaei A., et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis. 2020;20(1):646.
DOI: 10.1186/s12879-020-05374-z
-
46.
Nori P., Cowman K., Chen V., Bartash R., Szymczak W., Madaline T., et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol. 2021;42(1):84-88.
DOI: 10.1017/ice.2020.368
-
47.
Gaspar G.G., Ferreira L.R., Feliciano C.S., Campos Júnior C.P., Molina F.M.R., Vendruscolo A.C.S., et al. Pre- and post-COVID-19 evaluation of antimicrobial susceptibility for healthcare-associated infections in the intensive care unit of a tertiary hospital. Rev Soc Bras Med Trop. 2021;54:e00902021.
DOI: 10.1590/0037-86820090-2021
-
48.
Tiri B., Sensi E., Marsiliani V., Cantarini M., Priante G., Vernelli C., et al. Antimicrobial stewardship program, COVID-19, and infection control: spread of carbapenemresistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J Clin Med. 2020;9(9):2744.
DOI: 10.3390/jcm9092744
-
49.
Tapalskij D.V., Karpova E.V., Akulenok O.M., Okulich V.K., Generalov I.I., Leskova N.Yu., et al. Antibiotic resistance of Klebsiella pneumoniae against the background of the COVID-19 pandemic: experience of the multidisciplinary hospital. Infekcionnye bolezni: novosti, mneniya, obuchenie. 2021;10(3):15-22. Russian. (Тапальский Д.В., Карпова Е.В., Акуленок О.М., Окулич В.К., Генералов И.И., Лескова Н.Ю. и соавт. Антибиотикорезистентность Klebsiella pneumoniae на фоне пандемии COVID-19: опыт многопрофильного стационара. Инфекционные болезни: новости, мнения, обучение. 2021;10(3):1522.)
DOI: 10.33029/2305-3496-2021-10-3-15-22
-
50.
Esaulenko N.B., Tkachenko O.V. Changes in the sensitivity of the bacterial flora in patients with COVID-19. Results of own research. Klinicheskaya laboratornaya diagnostika. 2021;66(S4):80. Russian. (Эсауленко Н.Б., Ткаченко О.В. Изменение чувствительности бактериальной флоры у больных COVID-19. Результаты собственных исследований. Клиническая лабораторная диагностика. 2021;66(S4):80.)
-
51.
Li J., Wang J., Yang Y., Cai P., Cao J., Cai X., et al. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrob Resist Infect Control. 2020;9(1):153.
DOI: 10.1186/s13756020-00819-1
-
52.
Bahceci I., Yildiz I.E., Duran O.F., Soztanaci U.S., Kirdi Harbawi Z., Senol F.F., et al. Secondary bacterial infection rates among patients with COVID-19. Cureus. 2022;14(2):e22363.
DOI: 10.7759/cureus.22363
-
53.
Abdollahi A., Aliramezani A., Salehi M., Norouzi Shadehi M., Ghourchian S., Douraghi M. Co-infection of ST2IP carbapenem-resistant Acinetobacter baumannii with SARS-CoV-2 in the patients admitted to a Tehran tertiary referral hospital. BMC Infect Dis. 2021;21(1):927.
DOI: 10.1186/s12879-021-06642-2
-
54.
The AMS program (Strategy for Control of Antimicrobial Therapy) in the provision of inpatient medical care. Russian clinical guidelines. Eds. S.V. Yakovlev, N.I. Briko, S.V. Sidorenko, D.N. Procenko. M.: Izdatel'stvo «Pero», 2018. 156 p. Russian. (Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи. Российские клинические рекомендации. Под ред. С.В. Яковлева, Н.И. Брико, С.В. Сидоренко, Д.Н. Проценко. М.: Издательство «Перо», 2018. 156 с.
-
55.
Guisado-Gil A.B., Infante-Domínguez C., Peñalva G., Praena J., Roca C., Navarro-Amuedo M.D., et al. Impact of the COVID-19 pandemic on antimicrobial consumption and hospital-acquired candidemia and multidrugresistant bloodstream infections. Antibiotics (Basel). 2020;9(11):816.
DOI: 10.3390/antibiotics9110816
-
56.
Henig O., Keha O., Meijer S.E., Chikly A., Weiss-Meilik A., Egoz E., et al. Antibiotic use during the COVID-19 pandemic in a tertiary hospital with an ongoing antibiotic stewardship program. Antibiotics. 2021;10:1056.
DOI: 10.3390/antibiotics10091056
-
57.
Bengoechea J.A., Bamford C.G. SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? EMBO Mol Med. 2020;12(7):e12560.
DOI: 10.15252/emmm.202012560
-
58.
Lessa F.C., Mu Y., Bamberg W.M., Beldavs Z.G., Dumyati G.K., Dunn J.R., et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825-834.
DOI: 10.1056/NEJMoa1408913
-
59.
Wiuff C., Banks A.L., Fitzpatrick F., Cottom L. The need for European surveillance of CDI. Adv Exp Med Biol. 2018;1050:13-25.
DOI: 10.1007/978-3-319-727998_2
-
60.
Hensgens M.P.M., Goorhuis A., Dekkers O.M., Kuijper E. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67:742-748.
DOI: 10.1093/jac/dkr508
-
61.
Ferreira Ed.O., Penna B., Yates E.A. Should we be worried about Clostridioides difficile during the SARS-CoV2 pandemic? Front Microbiol. 2020;11:581343.
DOI: 10.3389/fmicb.2020.581343
-
62.
Lakkasani S., Chan K.H., Shaaban H.S. Clostridiodes difficile in COVID-19 patients, Detroit, Michigan, USA, March-April 2020. Emerg Infect Dis. 2020;26(9):22992300.
DOI: 10.3201/eid2609.202505
-
63.
Spigaglia P. COVID-19 and Clostridioides difficile infection (CDI): possible implications for elderly patients. Anaerobe. 2020;64:102233.
DOI: 10.1016/j.anaerobe.2020.102233
-
64.
Granata G., Petrosillo N., Al Moghazi S., Caraffa E., Puro V., Tillotson G., et al. The burden of Clostridioides difficile infection in COVID-19 patients: a systematic review and meta-analysis. Anaerobe. 2022;74:102484.
DOI: 10.1016/j.anaerobe.2021.102484
-
65.
Sandhu A., Tillotson G., Polistico J., Salimnia H., Cranis M., Moshos J., et al. Clostridioides difficile in COVID-19 patients, Detroit, Michigan, USA, March-April 2020. Emerg Infect Dis. 2020;26(9):2272-2274.
DOI: 10.3201/eid2609.202126
-
66.
Páramo-Zunzunegui J., Ortega-Fernández I., CalvoEspino P., Diego-Hernández C., Ariza-Ibarra I., OtazuCanals L., et al. Severe Clostridium difficile colitis as potential late complication associated with COVID-19. Ann R Coll Surg Engl. 2020;102(7):e176-e179.
DOI: 10.1308/rcsann.2020.0166
-
67.
Hawes A.M., Desai A., Patel P.K. Did Clostridioides difficile testing and infection rates change during the COVID-19 pandemic? Anaerobe. 2021;70:102384.
DOI: 10.1016/j.anaerobe.2021.102384
-
68.
Furuya-Kanamori L., Marquess J., Yakob L., Riley T.V., Paterson D.L., Foster N.F., et al. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis. 2015;15:516.
DOI: 10.1186/s12879-015-1258-4
-
69.
Cao W., Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020;30(5):367-369.
DOI: 10.1038/s41422-020-0327-4
-
70.
Horvat S., Rupnik M. Interactions between Clostridioides difficile and fecal microbiota in in vitro batch model: growth, sporulation, and microbiota changes. Front Microbiol. 2018;9:1633.
DOI: 10.3389/fmicb.2018.01633
-
71.
Pérez-Cobas A.E., Moya A., Gosalbes M.J., Latorre A. Colonization resistance of the gut microbiota against Clostridium difficile. Antibiotics (Basel). 2015;4(3):337357.
DOI: 10.3390/antibiotics4030337
-
72.
Scottish Antimicrobial Prescribing Group. Scottish Reduction in Antimicrobial Prescribing (ScRAP). Available at: www.sapg.scot/guidance-qi-tools/quality-improvement-tools/scottish-reduction-in-antimicrobial-prescribing-scrap/. Accessed July 2021.