Аннотация
Цефтолозан/тазобактам — новый комбинированный антимикробный препарат для борьбы с инфекциями, вызванными грамотрицательными микроорганизмами, в т.ч. устойчивыми к широко применяемым антибиотикам. В обзоре раскрыты особенности действия препарата, приведены данные по клинической и микробиологической эффективности, а также определено его место для терапии пациентов с осложнёнными интраабдоминальными инфекциями и инфекциями мочевых путей в свете национальных данных по чувствительности их возбудителей.
ФГБОУ ВО «Смоленский государственный медицинский университет» Минздрава России, Смоленск, Россия
НИИ антимикробной химиотерапии ФГБОУ ВО СГМУ Минздрава России, Смоленск, Россия
-
1.
Carlet J., Bouhaja B., Blériot J., Dazza F. Infections péritonéales postopératoires. In: L’infection en réanimation. Régnier B., BrunBuisson C., éds. Masson, Paris, 1988;126-138.
-
2.
Chow J.W., Satishchandran V., Snyder T.A., et al. In vitro susceptibilities of aerobic and facultative gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: the 2002 Study for Monitoring Antimicrobial Resistance Trends (SMART). Surg Infect. 2005;6:439-448.
-
3.
Lu P.I., Liu Y.C., Toh H.S., et al. Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009-2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Int J Antimicrob Agents. 2012;40(Suppl 1):37-43.
-
4.
Golub A.V., Dekhnich A.V., Kozlov R.S. Antimicrobial therapy of complicated intra-abdominal infections: what are the success determinants? Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2011;13:158-163. Russian. (Голуб А.В., Дехнич А.В., Козлов Р.С. Антибактериальная терапия осложненных интраабдоминальных инфекций: от чего зависит успех? Клиническая микробиология и антимикробная химиотерапия. 2011;13:158163.).
-
5.
Kozlov R.S., Golub A.V., Dekhnich A.V., Sukhorukova M.V., SMART study group. Antimicrobial resistance of gram-negative microorganisms causing complicated intra-abdominal infections in Russia. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2015;17:227-234. Russian. (Козлов Р.С., Голуб А.В., Дехнич А.В., Сухорукова М.В., исследовательская группа SMART. Антибиотикорезистентность грамотрицательных возбудителей осложненных интраабдоминальных инфекций в России. Клиническая микробиология антимикробная химиотерапия. 2015;17:227-234.).
-
6.
Skleenova E.Yu., Azizov I.S., Shek Е.А., et al. Pseudomonas aeruginosa: the history of one of the most successful nosocomial pathogens in Russian hospitals. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2018;20:164-171. Russian. (Склеенова Е.Ю., Азизов И.С., Шек Е.А., и др. Pseudomonas aeruginosa в РФ: история одного из наиболее успешных нозокомиальных патогенов. Клиническая микробиология антимикробная химиотерапия. 2018;20:164-171.).
-
7.
Moya B., Zamorano L., Juan C., et al. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:3933-3937.
-
8.
Moya B., Dotsch A., Juan C., et al. Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog. 2009;5:e1000353.
-
9.
Murano K., Yamanaka T., Toda A., et al. Structural requirements for the stability of novel cephalosporins to AmpC beta-lactamase based on 3D-structure. Bioorg Med Chem. 2008;16:2261-2275.
-
10.
Zhanel G.G., Chung P., Adam H., et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs. 2014;74:31-51.
-
11.
Moya B., Beceiro A., Cabot G., et al. Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56:4771-4778.
-
12.
Takeda S., Nakai T., Wakai Y., et al. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2007;51:826-830.
-
13.
Moulds N., Lister P. Impact of characterized resistance mechanisms on the susceptibility of Pseudomonas aeruginosa to CXA-101 [abstract no. C1-1415]. 50th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; September 12-15,2010; Boston.
-
14.
Moya B., Zamorano L., Juan C., et al. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother. 2010;54:1213-1217.
-
15.
Juan C., Zamorano L., Perez J.L., et al. Activity of a new antipseudomonal cephalosporin, CXA-101 (FR264205), against carbapenem-resistant and multidrug-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2010;54:846-851.
-
16.
Bulik C.C., Christensen H., Nicolau D.P. In vitro potency of CXA-101, a novel cephalosporin, against Pseudomonas aeruginosa displaying various resistance phenotypes, including multidrug resistance. Antimicrob Agents Chemother. 2010;54:557-559.
-
17.
Zamorano L., Juan C., Fernandez-Olmos A., et al. Activity of the new antipseudomonal cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patient. Clin Microbiol Infect. 2010;16:1482-1487.
-
18.
Shortridge D., Castanhera M., Pfaller M.A., et al. Ceftolozanetazobactam activity against Pseudomonas aeruginosa clinical isolates from U.S. hospitals: report from the PACTS antimicrobial surveillance program, 2012 to 2015. Antimicrob Agents Chemother. 2017;61:e00465-17.
-
19.
Cabot G., Bruchmann S., Mullet X., et al. Ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58:3091-3099.
-
20.
Drawz S.M., Bonomo R.A. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160-201.
-
21.
Yang Y., Rasmussen B.A., Shlaes D.M. Class A beta-lactamasesenzyme-inhibitor interactions and resistance. Pharmacol Ther. 1999;83:141-151.
-
22.
Bush K., Macalintal C., Rasmussen B.A., et al. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother. 1993;37:851-858.
-
23.
Sader H.S., Rhomberg P.R., Farrell D.J., et al. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother. 2011;55:2390-2394.
-
24.
Armstrong E.S., Farrell D.J., Palchak M., et al. In vitro activity of ceftolozane-tazobactam against anaerobic organisms identified during the ASPECT-cIAI Study. Antimicrob Agents Chemother. 2016;666-668.
-
25.
Ge Y., Whitehouse M.J., Friedland I., et al. Pharmacokinetics and safety of CXA-101, a new antipseudomonal cephalosporin, in healthy adult male and female subjects receiving single- and multiple-dose intravenous infusions. Antimicrob Agents Chemother. 2010;54:34273431.
-
26.
Chandorcar G., Huntington J.A., Gotfried M.H., et al. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother. 2012;67:24632469.
-
27.
Brown N.P., Pillar C.M., Draghi D.C., et al. Mode of action of CXA101 based on minimum bactericidal concentration (MBC) analysis and timekill kinetic (TK) analysis. Proceedings of the 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy, October 25-28, 2008, Washington, DC, USA. Abstr. #F1-358.
-
28.
Craig W.A., Andes D.R. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extendedspectrum beta-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1577-1582.
-
29.
Bulik C.C., Tessier P.R., Keel R.A., et al. In vivo comparison of CXA101 (FR264205) with and without tazobactam versus piperacillintazobactam using human simulated exposures against phenotypically diverse gram-negative organisms. Antimicrob Agents Chemother. 2012;56:544-549.
-
30.
VanScoy B., Mendes R.E., Nicasio A.M., et al. Pharmacokineticspharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model. Antimicrob Agents Chemother. 2013;57:2809-2814.
-
31.
VanScoy B., Mendes R.E., Castanheira M., et al. Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57:4134-4138.
-
32.
Xiao A.J., Huntington J.A., Long J., et al. Ceftolozane/tazobactam doze regimens in severely/morbidly obese patients with complicated intra-abdominal infection or complicated urinary tract infections. Int J Antimicrob Agents. 2018;52:324-330.
-
33.
Lucasti C., Hershberger E., Miller B., et al. Multicenter, doubleblind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob Agents Chemother. 2014;58:5350-5357.
-
34.
Solomkin J., Hershberger E., Miller B., et al. Ceftolozane-tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase III trial (ASPECT-cIAI). Clin Infect Dis. 2015;60:1462-1471.
-
35.
Miller B., Popejoy M.W., Hershberger E., et al. Characteristics and outcomes of complicated intra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob Agents Chemother. 2016;60:4387-4390.
-
36.
Wagenlehner F.M., Umeh O., Steenbergen J., et al. Ceftolozanetazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomized, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385:1949-1956.
-
37.
Popejoy M.W., Long J., Huntington A. Analysis of patient with diabetes and complicated intra-abdominal infections or complicated urinary tract infections in phase 3 trials of ceftolozane/tazobactam. BMC Infectious Diseases. 2017;17:316.
-
38.
Kozlov R.S, Golub A.V. Antimicrobial stewardship as a renascence of the ‘golden age’ of antibiotics. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2011;13:322-334. Russian. (Козлов Р.С., Голуб А.В. Стратегия использования антимикробных препаратов как попытка ренессанса антибиотиков. Клиническая микробиология антимикробная химиотерапия. 2011;13:322-334.).
-
39.
Merchant S., Proudfoot E.M., Quadri H.N., et al. Risk factors for Pseudomonas aeruginosa infections consequences of inappropriate initial antimicrobial therapy: a systematic literature review metaanalysis. J Glob Antimicrob Resist. 2018;14:33-44.
-
40.
Mensa J., Barberan J., Soriano A., et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish society of chemotherapy. Rev Esp Quimioter. 2018;31:78-100.
-
41.
Abdominal surgical infection: Russian national recommendations. Gelfand B.R., Kireenko A.I., Khachatrijan N.N. editors. – М.: Мedicinskoe informacionnoe agenstvo 2018. 168 p. Russian. (Абдоминальная хирургическая инфекция: Российские национальные рекомендации. Под ред. Гельфанда Б.Р., Кириенко А.И., Хачатрян Н.Н. – М.: Медицинское информационное агентство, 2018. 168 с.).
-
42.
Sader H.S., Castanheira M., Mendes R.E., et al. Frequency and antimicrobial susceptibility of Gram-negative bacteria isolated from patients with pneumonia hospitalized in ICUs of US medical centres (2015-17). J Antimicrob Chemother. 2018;73:3053-3059.
-
43.
Bassetti M., Vena A., Castaldo N., et al. New antibiotics for ventilatorassociated pneumonia. Curr Opin Infect Dis. 2018;31:177-186.