Аннотация
Одним из путей решения проблемы резистентности микроорганизмов к антимикробным препаратам является создание новых более эффективных антибиотиков, обладающих новыми механизмами действия. В статье приведён обзор инновационных антибиотиков, находящихся на разных стадиях доклинического и клинического исследования, в отношении которых подразумевается возможность их практического применения в дальнейшем. В настоящее время в активной разработке находится несколько десятков новых антибиотиков. Разработки ведутся как в направлении модификации уже известных групп антибактериальных препаратов (β-лактамные антибиотики, макролиды, тетрациклины, полипептидные антибиотики), так и в области поиска веществ с новыми механизмами действия (ингибиторы шаперона LolA, белка FtsZ и др.). Модификация структур известных препаратов приводит к формированию их новых подгрупп: бициклолидов (макролиды), фторциклинов, аминометилциклинов, пентациклинов (тетрациклины).
ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, Саратов, Россия
ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, Саратов, Россия
-
1.
Livermore D.M.; British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 2011; 66(9):1941-4.
-
2.
Septimus E.J., Kuper K.M. Clinical challenges in addressing resistance to antimicrobial drugs in the twenty-first century. Clin Pharmacol Ther 2009; 86(3):336-9.
-
3.
Козлов Р.С., Голуб А.В. Стратегия использования антимикробных препаратов как попытка ренессанса антибиотиков. Клиническая Микробиология и Антимикробная Химиотерапия 2011; 13(4):322-34
-
4.
A letter to President Obama and Swedish Prime Minister Reinfeldt [letter]. Available from: http://www.idsociety.org/WorkArea/DownloadAsset.aspx?id=15752. Published 2009 Nov 20.
-
5.
Колбин А.С., Балыкина Ю.Е., Сидоренко С.В. Исследования и разработки (R&D) новых антибактериальных средств. Есть ли ограничения в этом направлении? Ремедиум 2010; (12):44-8.
-
6.
Norrby R., Powell M., Aronsson B., et al. The bacterial challenge: time to react. Stockholm: European Centre for Disease Prevention and Control; 2009 Sep. Report No.: EMEA/576176/2009. doi: 10.2900/2518.
-
7.
Leeb M. Antibiotics: a shot in the arm. Nature 2004; 431:892-3.
-
8.
Jacobs M.R. Retapamulin: a semisynthetic pleuromutilin compound for topical treatment of skin infections in adults and children. Future Microbiol 2007; 2(6):591–600.
-
9.
Noel G.J., Bush K., Bagchi P., Ianus J., Strauss R.S. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 2008; 46(5):647-55.
-
10.
Козлов Р.С., Голуб А.В. Цефтаролин – Sui Generis. Клиническая Микробиология и Антимикробная Химиотерапия 2013; 15(2):124-30.
-
11.
File T.M. Jr., Low D.E., Eckburg P.B., et al. Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis 2010; 51(12):1395-405.
-
12.
Perletti G., Magri V., Wagenlehner F.M.E., Naber K.G. CXA-101. Drugs Fut 2010; 35(12):977-86.
-
13.
Cubist Pharmaceuticals [Internet]. [cited 2014 May 16]. Available from: http://www.cubist.com/news/133-сubist_presents_detailed_results_from_positive_phase_3_trials_of_ceftolozane_tazobactam_at_2014_european_congress_of_clinical_microbiology_and_infectious_diseases_eccmid.
-
14.
Zhang S., Mortin L.I., Li Y., et al. In vivo еfficacy of CB-027 against methicillin-Resistant Staphylococcus aureus, and ceftazidime-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae infections in mice. Available from: http://www.icaaconline.com/php/icaac2013abstracts/data/papers/2012/F/2012_F-846.htm.
-
15.
Sutton L.D., Yu S., Yu A., et al. Mechanism-based cephalosporin inhibitors of metallo- and serine-carbapenemases. available from: http://www.icaaconline.com/php/icaac2013abstracts/data/papers/2013/F/2013_F-1204.htm.
-
16.
Morrissey I., Biek D., Janes R. ME1036, a novel carbapenem, with enhanced activity against clinical isolates causing bacteraemic community-acquired pneumonia. J Antimicrob Chemother 2009; 64(1):209-10.
-
17.
Koga T., Masuda N., Kakuta M., Namba E., Sugihara C., Fukuoka T. Potent in vitro activity of tomopenem (CS023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52(8):2849-54.
-
18.
Tomozawa T., Sugihara C., Kakuta M., Sugihara K., Koga T. In vitro postantibiotic effects of tomopenem (CS-023) against Staphylococcus aureus and Pseudomonas aeruginosa. J Med Microbiol 2010; 59(4):438-41.
-
19.
Livermore D.M., Mushtaq S., Warner M. Activity of the anti-MRSA carbapenem razupenem (PTZ601) against Enterobacteriaceae with defined resistance mechanisms. J Antimicrob Chemother 2009; 64(2):330-5.
-
20.
Rempex Pharmaceuticals [Internet]. c2011 [updated 2012 Sep 07; cited 2014 May 16]. Available from: http://www.rempexpharma.com/news/9-7-12.
-
21.
Livermore D.M., Mushtaq S. Activity of biapenem (RPX2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 2013; 68(8):1825-31.
-
22.
The Medicines Company [Internet]. c2014 [updated 2014 Jan 13; cited 2014 May 16]. Available from: http://ir.themedicinescompany.com/phoenix.zhtml?c=122204&p=irol-newsArticle&ID=1890146&highlight=.
-
23.
Basilea Pharmaceutica [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.basilea.com/Development/BAL30072.
-
24.
McPherson C.J., Aschenbrenner L.M., Lacey B.M., et al. Clinically relevant gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophoreconjugated monocarbam. Antimicrob Agents Chemother 2012; 56(12):6334-42.
-
25.
Cole P, Vasiliou S. Highlights from the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Drugs Fut 2010; 35(12):1045-67.
-
26.
Novexel [Internet]. [cited 2014 May 16]. Available from: http://www.novexel.com/page_page=NXL104.html.
-
27.
Croasdell G., Font H. 52nd Аnnual Мeeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy. Drugs Fut 2012; 37(11):807-11.
-
28.
Louie T.J., Miller M.A., Mullane K.M., et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011 Feb 3; 364(5):422-31.
-
29.
Cole P., Vasiliou S., Font H. Anti-infective innovations: highlights from the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Drugs Fut 2009; 34(12):1005-28.
-
30.
Rafie S., MacDougall C., James C.L. Cethromycin: a promising new ketolide antibiotic for respiratory infections. Pharmacotherapy 2010; 30(3):290-303.
-
31.
Fernandes P., Pereira D., Jamieson B., Keedy K. Solithromycin. Drugs Fut 2011; 36(10):751-8.
-
32.
Cempra [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.cempra.com/products/Solithromycin-cem-101.
-
33.
Enanta Pharmaceuticals [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.enanta.com/research/antibiotics/.
-
34.
Grossman T., Ronn M., Dunwoody N., Sutcliffe J. New antibacterial agents under investigation. TP-834, an isoindoline-containing pentacycline antibiotic, is orally bioavailable, metabolically stable and has low potential for drug-drug interactions. Available from: http://registration.akm.ch/einsicht.php?XNABSTRACT_ID=142531&XNSPRACHE_ID=1&XNKONGRESS_ID=161&XNMASKEN_ID=900.
-
35.
Tetraphase Pharmaceuticals [Internet]. c2014 [cited 2014 May 16]. Available from: http://tphase.com/pipeline/eravacycline.
-
36.
Noel G.J., Draper M.P., Hait H., Tanaka S.K., Arbeit R.D. A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 2012; 56(11):5650-4.
-
37.
Lamarche M. J., Bushell S., Whitehead L., et al. Antibacterial Lead-optimization of the GE2270 Class of Thiopeptides: Identification of Development Candidates LDI028 and LDK733. Available from: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=6ade17ce-9434-4320-a9d1-6397f5942ba2&cKey=d6e7ce75-6c41-430dac50-b0efc7f7e98a&mKey={93AEED6A-54D4-4EF6-99BD-A9B3CE9FACD9}.
-
38.
Citron D.M., Tyrrell K.L., Merriam C.V., Goldstein E.J.C.. Comparative In vitro activities of lff571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother 2012; 56(5): 2493-503.
-
39.
Clinical Trials [Internet]. [updated 2013 Jun 5; cited 2014 May 16]. Available from: http://clinicaltrials.gov/ct2/show/NCT01232595.
-
40.
Mascio C.T., Mortin L.I., Howland K.T., et al. In vitro and in vivo characterization of CB-183315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob Agents Chemother 2012; 56(10):5023-30.
-
41.
Cubist Pharmaceuticals [Internet]. [cited 2014 May 16]. Available from: http://www.cubist.com/products/cdad.
-
42.
Clinical Trials [Internet]. [updated 2014 May 12; cited 2014 May 16]. Available from: http://clinicaltrials.gov/show/NCT01598311.
-
43.
Schneider T., Gries K., Josten M., et al. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother 2009; 53(4):1610-8.
-
44.
U.S. Food and Drug Administration [Internet]. [updated 2013 Jun 24; cited 2014 May 16]. Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm358209.htm.
-
45.
Damodaran S.E., Madhan S. Telavancin: A novel lipoglycopeptide antibiotic. J Pharmacol Pharmacother 2011; 2(2):135-7.
-
46.
Zhanel G.G., Schweizer F., Karlowsky J.A.. Oritavancin: mechanism of action. Clin Infect Dis 2012; 54 (Suppl 3):S214-9.
-
47.
Dunbar L.M., Milata J., McClure T., Wasilewski M.M.; SIMPLIFI Study Team. Comparison of the efficacy and safety of oritavancin front-loaded dosing regimens to daily dosing: an analysis of the SIMPLIFI trial. Antimicrob Agents Chemother 2011; 55(7):3476-84.
-
48.
Tice A. Oritavancin: a new opportunity for outpatient therapy of serious infections. Clin Infect Dis 2012; 54 (Suppl 3):S239-43.
-
49.
Durata Therapeutics [Internet]. c2014 [updated 2014 May 23; cited 2014 Jun 02]. Available from: http://www.duratatherapeutics.com/news-media/pressreleases/detail/774/fda-approves-durata-therapeuticsdalvancetm-for-the.
-
50.
Clinical Trials [Internet]. [cited 2014 May 16]. Available from: http://clinicaltrialsfeeds.org/clinical-trials/show/NCT01949103.
-
51.
Clinical Trials [Internet]. [cited 2014 May 16]. Available from: http://clinicaltrialsfeeds.org/clinical-trials/show/NCT01791049.
-
52.
Leuthner K.D., Vidaillac C., Cheung C.M., Rybak M.J. In vitro activity of the new multivalent glycopeptidecephalosporin antibiotic TD-1792 against vancomycinnonsusceptible Staphylococcus isolates. Antimicrob Agents Chemother 2010; 54(9):3799-803.
-
53.
Blais J., Lewis S.R., Krause K.M., Benton B.M. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother 2012; 56(3):1584-7.
-
54.
Theravance [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.theravance.com/bacterial.
-
55.
Novacta [Internet]. [cited 2014 May 16]. Available from: http://www.novactabio.com/careers.php.
-
56.
Nabriva Therapeutics [Internet]. [cited 2014 May 16]. Available from: http://www.nabriva.com/programs/pipeline.
-
57.
Van Rensburg D.J.J., Perng R.-P., Mitha I.H., et al. Efficacy and safety of nemonoxacin versus levofloxacin for community-acquired pneumonia. Antimicrob Agents Chemother 2010; 54 (10):4098-106.
-
58.
TaiGen Biotechnology Company [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.taigenbiotech.com.tw/Product/2-1.
-
59.
Remy J.M., Tow-Keogh C.A., McConnell T.S., Dalton DeVito J.M. Activity of delafloxacin against methicillinresistant Staphylococcus aureus: resistance selection and characterization. J Antimicrob Chemother 2012; 67:2814–20.
-
60.
Melinta Therapeutics [Internet]. [cited 2014 May 16]. Available from: http://www.melinta.com/delafloxacin.php.
-
61.
Pucci M.J., Bush K. Investigational Antimicrobial Agents of 2013. Clin Microbiol Rev 2013; 26(4):792-821.
-
62.
Furiex Pharmaceuticals [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.furiex.com/pipeline/discoverydevelopment-pipeline/fluoroquinolone.
-
63.
Higuchi S., Kurosaka Y., Uoyama S., et al. Anti-multidrug-resistant Acinetobacter baumannii activity of DS-8587: In vitro activity and in vivo efficacy in a murine calf muscle infection model. J Infection and Chemotherapy. 2014 Nov; 20(5):312-6.
-
64.
Daiichi Sankyo [Internet]. c2014 [cited 2014 May 16]. Available from: http://www.daiichisankyo.com/rd/pipeline.
-
65.
Amano H., Aoi H., Sakata K., et al. in vivo Activity of KPI-10, a novel fluoroquinolone (FQ), in mouse systemic and local infection models caused by multidrugand FQ-resistant pathogens. Available from: http://www.icaaconline.com/php/icaac2013abstracts/data/papers/2012/F/2012_F-2055.htm
-
66.
Li G.Q., Bai X.G., Li C.R., et al. In vivo antibacterial activity of chinfloxacin, a new fluoroquinolone antibiotic. J Antimicrob Chemother 2012; 67(4):955-61.
-
67.
Butler M.M., Shinabarger D.L., Citron D.M., et al. MBX500, a hybrid antibiotic with in vitro and in vivo efficacy against toxigenic Clostridium difficile. Antimicrob Agents Chemother 2012; 56(9):4786-92.
-
68.
Schaadt R., Sweeney D., Shinabarger D., Zurenko G. In vitro activity of TR-700, the active ingredient of the antibacterial prodrug TR-701, a novel oxazolidinone antibacterial agent. Antimicrob Agents Chemother 2009; 53(8):3236-9.
-
69.
Prokocimer P., De Anda C., Fang E., Mehra P., Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA 2013; 309(6):559-69.
-
70.
Cubist Pharmaceuticals [Internet]. [cited 2014 May 16]. Available from: http://www.cubist.com/products.
-
71.
Alffenaar J.W.C., van der Laan T., Simons S., et al. Susceptibility of clinical Mycobacterium tuberculosis isolates to a potentially less toxic derivate of linezolid, PNU 100480. Antimicrob Agents Chemother 2011; 55(3):1287-9.
-
72.
Melinta Therapeutics [Internet]. [cited 2014 May 16]. Available from: http://www.melinta.com/our_pipeline.php.
-
73.
Jeong J.-W., Jung S.-J., Lee H.-H., et al. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob Agents Chemother 2010; 54(12) 5359-62.
-
74.
Clinical Trials [Internet]. [updated 2013 Apr 24; cited 2014 May 16]. Available from: http://clinicaltrials.gov/ct2/show/NCT01842516.
-
75.
Baldoni D., Gutierrez M., Timmer W., Dingemanse J. Cadazolid, a novel antibiotic with potent activity against Clostridium difficile: safety, tolerability and pharmacokinetics in healthy subjects following single and multiple oral doses. J Antimicrob Chemother 2014; 69(3):706-14.
-
76.
Clinical Trials [Internet]. [updated 2014 May 09; cited 2014 May 16]. Available from: http://clinicaltrials.gov/ct2/show/NCT01983683.
-
77.
Lin L., Tana B., Pantapalangkoora P., et al. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. mBio 3(5):e00312-12. doi:10.1128/ mBio.00312-12.
-
78.
Pathania R., Zlitni S., Barker C., et al. Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat Chem Biol 2009; 5(11):849-56.
-
79.
Barker C.A., Allison S.E., Zlitni S., et al. Degradation of MAC13243 and studies of the interaction of resulting thiourea compounds with the lipoprotein targeting chaperone LolA. Bioorg Med Chem Lett 2013; 23(8):2426-31.
-
80.
Lock R.L., Harry E.J. Cell-division inhibitors: new insights for future antibiotics. Nature Reviews Drug Discovery 2008; (7):324-38.
-
81.
Mahajan G., Thomas B., Parab R., et al. In vitro and in vivo activities of antibiotic PM181104. Antimicrob Agents Chemother 2013; 57(11):5315-9.
-
82.
M Pharma [Internet]. c2014 [updated 2011 Jan 10; cited 2014 May 16]. Available from: http://www.lgmpharma.com/blog/ramoplanin-protecting-patients-againstcdad-attacks-in-hospitals/#sthash.po5IIsph.dpuf.
-
83.
Nanotherapeutics [Internet]. c2013 [cited 2014 May 16]. Available from: http://www.nanotherapeutics.com/?q=products_ramoplanin.
-
84.
Phillips J.W., Goetz M.A., Smith S.K., et al. Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 2011; 18(8):955-65.
-
85.
Miesel L., Hecht D.W., Osmolski J.R., et al. Kibdelomycin is a potent and selective agent against toxigenic Clostridium difficile. Antimicrob Agents Chemother 2014; 58(4): 2387-92.
-
86.
Karlowsky J.A., Kaplan N., Hafkin B., Hoban D.J., Zhanel G.G. AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob Agents Chemother 2009; 53(8):3544-8.
-
87.
Escaich S., Prouvensier L., Saccomani M., et al. The MUT056399 inhibitor of FabI is a new antistaphylococcal compound. Antimicrob Agents Chemother 2011; 55(10):4692-7.
-
88.
Ro S., Overcash J., Green S., Cho J. Phase 2a Study of CG400549 for the Treatment of ABSSSI Caused by MRSA. Available from: http://www.icaaconline.com/php/icaac2013abstracts/data/papers/2013/late/2013_L-206b.htm.
-
89.
Zhang W., Li Y., Qian G., Wang Y., Chen H., Li Y.Z., et al. Identification and characterization of the antimethicillin-resistant Staphylococcus aureus WAP8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrob Agents Chemother 2011; 55(12):5581-9.
-
90.
McClure N.S., Day T. Slowing evolution is more effective than enhancing drug development for managing resistance [Internet]. [updated 2013 Jul 10; cited 2014 May 16]. Available from: http://arxiv.org/abs/1304.7715.