Abstract
The activity of 11 antibiotics combinations and 4 commercially available preparations for phagotherapy in regard to metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa clinical isolates of sequence type 235 (ST 235) belonging to the clonal complex (CC 235) is studied. High levels of drug resistance of MBL-producing Pseudomonas aeruginosa isolates with multiple excess of threshold PC/PD-concentrations for beta-lactams, aminoglycosides and fluorquinolones and preserved sensitivity only to polymyxins are revealed. Synergetic and additive effect of all antibiotic combinations based on colistin is not shown. Amikacinbased combinations with additive effect are found out. Insufficient activity of preparations for phagotherapy is demonstrated (no more than 32% isolates are possessed of sensitivity to them). Different preparations with labeled anti-Pseudomonas activity showed differences between the spectrum of antibacterial activity. High incidence rate of secondary phage resistance is detected.
Gomel State Medical University, Gomel, Belarus
-
1.
Cornaglia G., Giamarellou H., Rossolini G.M. Metalloβ-lactamases: a last frontier for β-lactams? Lancet Infect Dis 2011; 11:381-93.
-
2.
Magiorakos A.P., Srinivasan A., Carey R.B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268-81.
-
3.
Эйдельштейн М.В., Склеенова Е.Ю., Шевченко О.В. и др. Распространенность и молекулярная эпидемиология грамотрицательных бактерий, продуцирующих металло-бета-лактамазы, в России, Беларуси и Казахстане. Клин микробиол антимикроб химиотер 2012; 14(2):132-52.
-
4.
Тапальский Д.В., Осипов В.А., Жаворонок С.В. Карбапенемазы грамотрицательных бактерий: распространение и методы детекции. Медицинский журнал 2012; 2:10-1
-
5.
Edelstein M.V., Skleenova E.N., Shevchenko O.V., et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infectious Diseases 2013; 13(10):867-7
-
6.
Bassetti M., Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch Surg 2015; 400:153-65.
-
7.
Zavascki A.P., Bulitta J.B., Landersdorfer C.B. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev Anti Infect Ther 2013; 11:1333-53.
-
8.
Lim T.P., Lee W., Tan T.Y., et al. Effective antibiotics in combination against extreme drug-resistant Pseudomonas aeruginosa with decreased susceptibility to polymyxin B. PloS One 2011; 6(12):E28177.
-
9.
Rahal J.J. Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 2006; 43(Suppl. 2):S95-S99.
-
10.
D’Souza B.B., Padmaraj S.R., Rekha P.D., et al. In vitro synergistic activity of colistin and ceftazidime or ciprofloxacin against multidrug-resistant clinical strains of Pseudomonas aeruginosа. Microb Drug Resist 2014; 20:550-4.
-
11.
Ly N., Bulitta J.B., Rao G.G., et al. Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance. J Antimicrob Chemother 2015; 70:1434-42.
-
12.
Urban C., Mariano N., Rahal J.J. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob Agents Chemother 2010; 54:2732-4.
-
13.
Zavascki A.P., Carvalhaes C.G., Picao R.C., Gales A.C. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 2010; 8:71-93.
-
14.
Zusman O., Avni T., Leibovici L., et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 2013; 57:5104-11.
-
15.
White R.L., Burgess D.S., Manduru M., Bosso J.A. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 1996; 40:1914-8.
-
16.
Larche J., Pouillot F., Essoh C., et al. Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. Antimicrob Agents Chemother 2012; 56:6175-80.
-
17.
Viertel T.M., Ritter K., Horz H.P. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 2014; 69:2326-36.
-
18.
Зурабов А.Ю., Каркищенко Н.Н., Попов Д.В. и др. Создание отечественной коллекции бактериофагов и принципы разработки лечебно-профилактических фаговых препаратов. Биомедицина 2012; 1:134-8.
-
19.
Krylov V.N. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. Adv Virus Res 2014; 88:227-78.
-
20.
Каталог продукции ФГУП «НПО «Микроген»: [Электронный ресурс] //URL: http://www.microgen.ru/products/bakteriofagi (Дата обращения: 01.08.2016).
-
21.
Labrie S.J., Samson J.E., Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010; 8:317-27.
-
22.
Габриэлян Н.И., Арефьева Л.И., Спирина Т.С., Горская Е.М. Чувствительность к бактериофагам микрофлоры субстратов пациентов кардиохирургического и трансплантологического профиля. Материалы V Ежегодного Всероссийского Конгресса по инфекционным болезням. Москва 2013:96-7.
-
23.
Габриэлян Н.И., Горская Е.М., Спирина Т.С. и др. Исследование антибиотико- и фагочувствительности нозокомиальных штаммов микробов, выделенных от пациентов трансплантологической клиники. Вестник трансплантологии и искусственных органов 2011; 3:26-32.
-
24.
Карноухова О.Г., Коган Г.Ю., Боброва О.И., Ботвинкин А.Д. Устойчивость госпитальных изолятов синегнойной палочки к антибиотикам и бактериофагам. Материалы V Ежегодного Всероссийского Конгресса по инфекционным болезням. Москва 2013:184.
-
25.
Шевченко О.В., Эйдельштейн М.В., Степанова М.Н. Металло-b-лактамазы: значение и методы выявления у грамотрицательных неферментирующих бактерий. Клин микробиол антимикроб химиотер 2007; 9(3):211-8.
-
26.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. http://www.eucast.org
-
27.
Krylov V., Shaburova O., Pleteneva E., et al. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol Sin 2015; 30:33-44.
-
28.
Henry M, Lavigne R, Debarbieux L. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 2013; 57:5961-8.