Abstract
We studied 126 children, admitted to cardiac surgery hospital with colonization of the gastrointestinal tract (GIT) by multidrug-resistant Enterobacteriaceae. Criterion for inclusion in the study were children with complex congenital heart disease before the age of 1 year, with a previous hospitalization. Study was performed from April to December in 2013. In 51 (40.5%) patients colonization of the GIT by MDR-Enterobacteriaceae was detected. In 49 (38.9%) cases we revealed ESBL-producing strains using double-disk method. ESBL-producing strains expressed gene of CTX-M-1-related enzymes in 93% and gene of CTX-M-9-related enzymes in 6.8% cases. We revealed 10 cases of colonization GIT by carbapenem-resistant Enterobacteriaceae which expressed gene CTX–M-1- related enzymes (8 strains) and gene OXA-48 (2 strains). Detection of carbapenemase-producing K. pneumoniae was demonstrated the need of the strictest compliance with infection control measures and the introduction of modern methods of microbiological diagnosis.
Novosibirsk Research Institute of Circulation Pathology named after E.N. Meshalkin, Novosibirsk, Russia
Novosibirsk Research Institute of Circulation Pathology named after E.N. Meshalkin, Novosibirsk, Russia
Center for New Medical Technologies, Novosibirsk, Russia
Novosibirsk Research Institute of Circulation Pathology named after E.N. Meshalkin, Novosibirsk, Russia
Novosibirsk Research Institute of Circulation Pathology named after E.N. Meshalkin, Novosibirsk, Russia
Novosibirsk Research Institute of Circulation Pathology named after E.N. Meshalkin, Novosibirsk, Russia
-
1.
Valverde A., Grill F., Coque T.M., et.al. High rate of intestinal colonization with extended-spectrum-βlactamase-producing organisms in household contacts of infected community patients. J Clin microbiol 2008; 46(8):2796-9.
-
2.
Han J.H., Nachamkin I., Zaoutis T.E., et al. Risk factors for gastrointestinal tract colonization with extended-spectrum β-lactamase (ESBL)- producing Escherichia coli and Klebsiella species in hospitalized patients. Infect Control Hosp Epidemiol 2012; 33(12):1242-5.
-
3.
Magiorakos A. P., Srinivasan A., Carey R. B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3):268-81.
-
4.
Всемирная организация здравоохранения. Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам. WHO/CDC/ CSR/DRS/2001.2. Женева, ВОЗ, 2001. Available from: URL: http://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf
-
5.
Saidel-Odes L., Borer A. Limiting and controlling carbapenem-resistant Klebsiella pneumoniae. Infect Drug Resist 2013; 7:9-14.
-
6.
Harris A. D., Perencevich E. N., Johnson J. K., et al. Patient-to-patient transmission is important in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae acquisition. Clin Infect Dis 2007; 45(10):1347-50.
-
7.
Определение чувствительности микроорганизмов к антибактериальным препаратам (Методические указания МУК 4.2.1890-04). Клин микробиол антимикроб химиотер 2004; 6(4):307-59.
-
8.
EUCAST Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0.2014;1-7
-
9.
CLSI Performance standards for antimicrobial susceptibility testing; Twenty-Third informational supplement M100-23. 2013;33(1):199
-
10.
EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 1.0.2013;1-40.
-
11.
Hasija S., Makhija N., Kiran U., Kumar S. Choudhary Nosocomial infections in infants and children after cardiac surgery. Ind J Thorac Cardiovasc Surg 2008; 24:233-9.
-
12.
Barker G.M., O´Brien S.M., Welke K.F., et.al. Major infection after pediatric cardiac surgery: a risk estimation model. Ann Thorac Surg. 2010;89(3): 843-50.
-
13.
Costello J.M., Graham D. A., Morrow D.F., et al. Risk factors for surgical site infection after cardiac surgery in children. Ann Thorac Surg 2010; 89(6):1833-41.
-
14.
Siddiqui N. U., Mir F., Shakil O., Amanullah M, Haque A. Health-care associated infections in children after cardiac surgery in a pediatric cardiac intensive care unit (PCICU). J Infect Dev Ctries 2011; 5(10):748-50.
-
15.
Страчунский Л.С. β-лактамазы расширенного спектра - быстро растущая и плохо осознаваемая угроза. Клин микробиол антимикроб химиотер 2005; 7(1):92-6.
-
16.
Эйдельштейн М.В., Страчунский Л.С., Агапова Е.Д. и соавт. Динамика распространенности и чувствительности БЛРС-продуцирующих энтеробактерий к различным антимикробным препаратам в ОРИТ России. Клин микробиол антимикроб химиотер 2005; 7(4):323-36.
-
17.
Sydnor E. R., Perl T. M. Hospital epidemiology and infection control in acute-care settings. Clinical Microbiol Rev 2011; 24(1):141-73.
-
18.
Report 2013. Antibiotic resistance threats in the United States. 2013 U. S. Department of Health and Human Services Centers for Disease Control and Prevention. Available from: URL: http://www.cdc.gov/drugresistance/threat-report-2013
-
19.
Dedeić-Ljubović A., Hukić M. Occurrence of colonization and infection with multidrug-resistant organisms in a neonatal intensive care unit. Med Glas 2012; 9(2):304-10.
-
20.
Birgand G., Armand-Lefevre L., Lolom I., et al. Duration of colonization by extended-spectrum β-lactamaseproducing Enterobacteriaceae after hospital discharge. Am J Infect Control 2013; 41(5):443-7.
-
21.
Reddy P., Malczynski M., Obias A., et al. Screening for extended-spectrum β-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis 2007; 45(7):846-52.
-
22.
Paterson D. L., Bonomo R. A. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4):657-86.
-
23.
Решедько Г.К., Рябкова Е.Л., О. И. Кречикова О. И. и соавт. Резистентность к антибиотикам грамотрицательных возбудителей нозокомиальных инфекций в ОРИТ многопрофильных стационаров России. Клин микробиол антимикроб химиотер 2008; 10(2):163-79.
-
24.
Ильина В. Н., Субботовская А. И., Козырева В. С., Сергеевичев Д. С., Шилова А. Н. Чувствительность энтеробактерий, выделенных в кардиохирургическом стационаре, к антимикробным препаратам. Патология кровообращения и кардиохирургия 2013; 3:41-45.
-
25.
Jacoby G.A., Mills D.M., Chow N. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiellae pneumoniae. Antimicrob Agents Chemother 2004; 48(8):3203-6.
-
26.
Patel G., Huprikar S., Factor S. H., Jenkins S. G., Calfee D.P. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29(12):1099-106.
-
27.
Poirel L., Potron A., Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67(7):1597-606.
-
28.
Sukhorukova M., Savochkina J., Alexandrova I., et al. First outbreak of carbapenem resistant OXA-48- producing Klebsiella pneumoniae in Russia. European Congress of Clinical Microbiology and Infectious Diseases, London, UK, 2012. Abstract R2508.
-
29.
Ben-David D., Maor Y., Keller N. et al. Potential role of active surveillance in the control of a hospital-wide outbreak of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2010; 31(6):620-6.
-
30.
Григорьевская З.В., Петухова И.Н., Дмитриева Н.Д. Вспышка внутрибольничной инфекции, вызванной мультирезистентный (MDR) штаммами K. pneumoniae. Сибирский онкологический журнал 2014; 2(62):5-8.
-
31.
Kalpoe J.S., Naiemi N., Poirel L., Nordmann P. Detection of an Ambler class D OXA-48-type β-lactamase in a Klebsiella pneumoniae strain in The Netherlands. J Med Microbiol 2011; 60:677-8.