Abstract
Nonfermenting gram-negative rods (NGR) are one of the leading nosocomial pathogens. Among them Pseudomonas aeruginosa, Acinetobacter baumannii, Pseudomonas aeruginosa, Acinetobacter spp., Burkholderia spp., Stenotrophomonas spp., and Chryseobacterium spp. are of clinical importance. NGR usually cause infections in patients with predisposing conditions, such as immunocompromise status, previous administration of broad-spectrum antimicrobials, artificial ventilation, malignancies, etc. P. aeruginosa and B. cepacia, play major role in lower respiratory tract infections in patients with cystic fibrosis. The most important feature of NGR from clinical point of view is high rates of resistance to different classes of antimicrobials. Majority of multiresistance problems linked to active efflux systems, among which MexAB-OprM, MexCD-OprJ, MexEFOprN and MexXY in P. aeruginosa are studied in details; similar systems described in Stenotrophomonas spp., Acinetobacter baumannii, B. pseudomallei. Another important characteristics of NGR are so called «quorum sensing» – the mechanism that controls the production of many factors of pathogenicity, and ability to form biofilm, the structure and physiological nature of which provide decreased susceptibility to antibiotics, antiseptics, and to immune system. In present review the taxonomy and epidemiology of NGR are also discussed.
-
1.
Kiska D.L., Gilligan P.H. Pseudomonas. In: Murray P.R., Baron E.J., Jorgensen J.H., Pfaller M.A., Yolken R.H., eds. Manual of Clinical Microbiology. 8th ed. Washington: ASM Press; 2003. p. 719-728.
-
2.
Gilligan P.H., Lum G., Vandamme P.A.R., Whittier S. Burk holderia, Stenotrophomonas, Ralstonia, Brevundi monas, Comamonas, Delftia, Pandorea, and Acidovorax. Ibid. p. 729-748.
-
3.
Schreckenberger P.C., Daneshvar M.I., Weyant R S., Hollis D.G. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. Ibid. p. 749-779.
-
4.
Страчунский Л.С., Решедько Г.К., Рябкова Е.Л. и др. Рекомендации по оптимизации антимикробной терапии нозокомиальных инфекций, вызванных грамотрицательными бактериями в отделениях реанимации и интенсивной терапии. Пособие для врачей. Смоленск: Боргес; 2002. 22 с.
-
5.
Quinn J.P. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clin Infect Dis 1998; 27 (Suppl.):S117-S124.
-
6.
Osmon S., Ward S., Fraser V.J., Kollef M.H. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 2004; 125:607-16.
-
7.
Bergogne-Berezin E., Towner K.J. Acinetobacter Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9:148-65.
-
8.
Seifert H., Dijkshoorn L., Gerner-Schmidt P., Pezler N., Tjernberg I., Vaneechoutte M. Distribution of Acinetobacter species on human skin; comparison of phenotypic species on human skin; comparison of phenotypic and genotypic identification methods. J Clin Microbiol 1997; 35:2819-25.
-
9.
McDonald L.C., Banerjee S.N., Jarvis W.R. Seasonal variation of Acinetobacter infections: 1987-1996. Noso- infections: 1987-1996. Nosocomial Infections Surveillance System. Clin Infect Dis 1999; 29:1133-7.
-
10.
Denton M., Todd N.J., Kerr K.G., et al. Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. J Clin Microbiol 1998; 36:1953-8.
-
11.
Denton M., Kerr K.G. Microbiology and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 1998; 11:57-80.
-
12.
Valdezate S., Vindel A., Maiz L. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-1998. Emerg Infect Dis 2001; 7:113-22.
-
13.
VanCouwenberghe C.J., Farver T.B., Cohen S.H. Risk factors associated with isolation of Stenotrophomonas (Xantomonas) maltophilia in clinical specimens. Infect Control Hosp Epidemiol 1997; 18:316-21.
-
14.
Apisarnthanarak A., Mayfield J.L., Garison T., et al. Risk factors for Stenotrophomonas maltophilia bacteremia in oncology patients: a case-control study. Infect Control Hosp Epidemiol 2003; 24:269-74.
-
15.
Govan J.R.W., Hughes J.E., Vandamme P. Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 1996; 45:395-407.
-
16.
Luczak J.B., Cannon C.L., Pier G.B. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194-222.
-
17.
Cystic Fibrosis Foundation. Patient Registry 1999 Annual Data Report. Cystic Fibrosis Foundation, Bethesda, 2000.
-
18.
Jones A.M., Todd M.E., Webb A.K. Burkholderia cepacia: current clinical issues, environmental controversies and ethical dilemmas. Eur Respir J 2001; 17:295-301.
-
19.
Bentranpetit J., Calafell F. Genetic and geographical variability in cystic fibrosis: evolutionary considerations. Ciba Found Symp 1996; 197;97-114; discussion 114-118.
-
20.
Bear C.E., Li C.H., Kartner N., et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 1992; 68:809-18.
-
21.
Cahill P., Nason M.W., Ambrose C., et al. Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2. J Biol Chem 2000; 275:16697-701.
-
22.
Pier G.B. CFTR mutations and host susceptibility to Pseudomonas aeruginosa infection. Curr Opin Microbiol 2002; 5:81-6.
-
23.
Frederiksen B., Koch C., Hoiby N. Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974-1995). Pediatr Pulmonol 1999; 28:159-66.
-
24.
Davies J.E. Origins, acquisition and dissemination of antibiotic resistance determinants. In: Chadwick D.J, editor. Antibiotic resistance: origins, evolution, selection and spread. Chinester (UK): John Wiley and Sons Ltd.; 1997. p. 15-35.
-
25.
Grkovic S., Brown M.H., Skurray R.A. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701.
-
26.
Jack D.L., Yang N.M., Saier M.H. Jr. The drug/metabolite transporter superfamily. Eur J Biochem 2001; 268:3620-39.
-
27.
Neyfakh A.A. Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 2002; 44:1123-30.
-
28.
Pearson J.P., Van Delden C., Iglewski B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 1999; 181:1203-10.
-
29.
FitzSimmons S.C. The changing epidemiology of cystic fibrosis. Curr Probl Pediatr 1994; 24:171-9.
-
30.
Masuda N., Sakagawa E., Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995; 39:645-9.
-
31.
Poole K. Multidrug efflux pump and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001; 3:255-64.
-
32.
Zhang L., Li X.Z., Poole K. SmeDEF multidrug efflux meDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001; 45:3497-503.
-
33.
Moore R.A., DeShazer D., Reckseidler S., et al. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 1999; 43:465-70.
-
34.
Albus A.M., Pesci E.C., Runyen-Janecky L.J., et al. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997; 179:3928-35.
-
35.
Van Delten C., Iglewski B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 1998; 4:561-70.
-
36.
Bertani I., Sevo M., Kojic M., Venturi V. Role of GacA, LasI, RhlI, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS/RpoS in Pseudomonas. Arch Microbiol 2003; 180:264-71.
-
37.
Gotschlich A., Huber B., Geisenberger O., et al. Synthesis of multiple N-acylhomoserine lactones is widespread among members of the Burkholderia cepacia complex. Syst Appl Microbiol 2001; 24:1-14.
-
38.
Huber B., Riedel K., Hentzer M., et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 2001; 147:2517-28.
-
39.
Conway B. A., Greenberg E.P. Quorum sensing signals and quorum sensing genes in Burkholderia vietnamiensis. J Bacteriol 2002; 184:1187-91.
-
40.
Lutter E., Lewenza S., Dennis J.J., et al. Distribution of quorum-sensing genes in Burkholderia cepacia complex. Infect Immun 2001; 69:4661-6.
-
41.
Шагинян И.А., Чернуха М.Ю. Бактерии комплекса Burkholderia cepacia: особенности диагностики, генома и метаболизма. Молекулярная генетика, микробиология, вирусология 2003; (2):3-10.
-
42.
O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54:49-79.
-
43.
Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167-93.
-
44.
Williams I., Venables W.A., Lloyd D., et al. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 1997; 143:2407-13.
-
45.
Ceri H., Olson M.E., Stremick C., et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37:1771-6.
-
46.
Vorachit M., Lam K., Jayanetra P., Costerton J.W. Resistance of Pseudomonas pseudomallei growing as a biofilm on silactic disks to ceftazidime and co-trimoxazole. Antimicrob Agents Chemother 1993; 37:2000-2.
-
47.
Larsen T., Fiehn N.-E. Resistance of Streptococcus sanguis biofilms to antimicrobial agents. APMIS 1996; 104:280-4.
-
48.
Donlan R.M. Biofilms and device-associated infections. Emerg Infect Dis 2001; 7:277-81.
-
49.
Brooun A., Liu S., Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000; 44:640-6.
-
50.
Drenkard E., Ausubel F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002; 416:740-3.
-
51.
Xu K.D., McFeters G.A., Stewart P.S. Biofilm resistance to antimicrobial agents. Microbiology 2000; 146:547-9.
-
52.
Conway B.A., Venu V., Speert D.P. Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol 2002; 184:5678-85.
-
53.
Davies D.G., Parsek M.R., Pearson J.P., et al. The involvement of cell-to cell signals in the development of a bacterial biofilm. Science 1998; 280:295-8.
-
54.
Singh P.K., Schaeer A.L., Parsek M.R., et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407:762-4.
-
55.
Laing F.P.Y., Ramotar K., Read R.R., et al. Molecular epidemiology of Xanthomonas maltophilia colonization and infection in the hospital environment. J Clin Microbiol 1995; 33:513-8.
-
56.
Liang X., Pharm X., Olsen M.V., Lory S. Identification of genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J Bacteriol 2001; 183:843-53.
-
57.
Jones A.M., Govan J.R.W., Doherty C.J., et al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis unit. Lancet 2001; 358:557-8.