Аннотация
Успех экспансии ESKAPE-патогенов во многом определяется способностью быстро приобретать высокие уровни устойчивости к антимикробным препаратам. Общий бактериальный резистом является функцией (1) генов резистентности, которые могут передаваться горизонтально («плазмидные» гены), и (2) хромосомных генов, мутации в которых могут приводить к формированию антибиотикорезистентности. В настоящем обзоре обоснован приоритетный перечень хромосомных генов бактерий группы ESKAPE, мутации в которых приводят к повышению устойчивости к антимикробным препаратам. Многообразие хромосомных генов, мутации в которых индуцируют антимикробную резистентность (АМР), обеспечивает быструю адаптацию патогена к антимикробным препаратам за счет создания многоуровневой системы нейтрализации антибиотиков. Анализ механизмов АМР конкретного патогена с позиции, учитывающей лишь плазмидные гены резистентности, является недостаточным. Полный профиль механизмов АМР должен включать оценку состояния хромосомных генов, мутации в которых приводят к повышению устойчивости к антибиотикам.
ФГАОУ ВО «Российский национальный исследовательский медицинский университет» им. Н.И. Пирогова Минздрава России, Москва, Россия
ФГАОУ ВО «Российский национальный исследовательский медицинский университет» им. Н.И. Пирогова Минздрава России, Москва, Россия
ФГАОУ ВО «Российский национальный исследовательский медицинский университет» им. Н.И. Пирогова Минздрава России, Москва, Россия
-
1.
Prestinaci F., Pezzotti P., Pantosti F. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-318.
DOI: 10.1179/2047773215Y.0000000030
-
2.
CDC’s Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report). Available at: www.hhs.gov/sites/default/files/michael-craig-cdc-talkthursday-am-508.pdf. Accessed March 10, 2023.
-
3.
Boucher H.W, Talbot G.H, Bradley J.S, Edwards J.E, Gilbert D., Rice L.B., et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1-12.
DOI: 10.1086/599017
-
4.
Takayama Y., Tanaka T., Oikawa K., Fukano N., Goto M., Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan. Ann Lab Med. 2018;38(2):155159.
DOI: 10.3343/alm.2018.38.2.155
-
5.
Kadlec K., Fessler A.T., Hauschild T., Schwarz S. Novel and uncommon antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2012;18(8):745-55.
DOI: 10.1111/j.1469-0691.2012.03842.x
-
6.
Goots T. Global dissemination of lactamases mediated resistance to cephalosporins and carbapenems. Expert Rev Anti Infect Ther. 2004;2(2):317-327.
DOI: 10.1586/14787210.2.2.317
-
7.
Cayci Y.T., Coban A.Y., Gunaydin M. Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa clinical isolates. Indian J Med Microbiol. 2014; 32(3):285-289.
DOI: 10.4103/0255-0857.136567
-
8.
Markley J.L., Wencewicz T.A. Tetracycline-inactivating enzymes. Front Microbiol. 2018;9:1058.
DOI: 10.3389/fmicb.2018.01058
-
9.
Ito R., Mustapha M., Tomich A.D., Callaghan J.D., McElheny C.L., Mettus R.T., et al. Widespread fosfomycin resistance in Gram-negative bacteria attributable to the chromosomal fosA gene. mBio. 2017;8(4):e00749-17.
DOI: 10.1128/mBio.00749-17
-
10.
Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28(5):519542.
DOI: 10.1016/j.femsre.2004.04.001
-
11.
Heidary M., Bahramian A., Hashemi A., Goudarzi M., Omrani V.F., Eslami G., et al. Detection of acrA, acrB, aac(6′)-Ib-cr, and qepA genes among clinical isolates of Escherichia coli and Klebsiella pneumoniae. Acta Microbiol Immunol Hung. 2017;64(1):63-69.
DOI: 10.1556/030.63.2016.011
-
12.
Tang Y., Shen P., Liang W., Jin J., Jiang X. A putative multireplicon plasmid co-harboring beta-lactamase genes blaKPC-2, blaCTX-M-14 and blaTEM-1 and trimethoprim resistance gene dfrA25 from a Klebsiella pneumoniae sequence type (ST) 11 strain in China. PLoS One. 2017;12(2):e0171339.
DOI: 10.1371/journal.pone.0171339
-
13.
Liu Y.Y., Wang Y., Walsh T.R., Yi L.X., Zhang R., Spencer J., et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-168.
DOI: 10.1016/S14733099(15)00424-7
-
14.
Li L., Ye L., Zhang S., Meng H. Isolation and identification of aerobic bacteria carrying tetracycline and sulfonamide resistance genes obtained from a meat processing plant. J Food Sci. 2016;81(6):M1480-M1484.
DOI: 10.1111/1750-3841.13318
-
15.
Noureen M., Tada I., Kawashima T., Arita M. Rearrangement analysis of multiple bacterial genomes. BMC Bioinformatics. 2019;20(23):1-10.
DOI: 10.1186/s12859-019-3293-4
-
16.
Darmon E., Leach D R. Bacterial genome instability. Microbiol Mol Biol Rev. 2014;78(1):1-39.
DOI: 10.1128/MMBR.00035-13
-
17.
Hoeksema M., Jonker M. J., Bel K., Brul S., Ter Kuile B.H. Genome rearrangements in Escherichia coli during de novo acquisition of resistance to a single antibiotic or two antibiotics successively. BMC Genomics. 2018;19(1):973.
DOI: 10.1186/s12864-018-5353-y
-
18.
Shamina O.V., Kryzhanovskaya O.A., Lazareva A.V., Alyabieva N.M., Polikarpova S.V., Karaseva O.V., Mayanskiy N.A. Emergence of a ST307 clone carrying a novel insertion element MITEKpn1 in the mgrB gene among carbapenem-resistant Klebsiella pneumoniae from Moscow, Russia. Int J Antimicrob Agents. 2020;55(2):105850.
DOI: 10.1016/j.ijantimicag.2019.11.007
-
19.
Jiang X., Hall A.B., Arthur T.D., Plichta D.R., Covington C.T., Poyet M., et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science. 2019;363(6423):181187.
DOI: 10.1126/science.aau5238
-
20.
Mesbah-Uddin M., Guldbrandtsen B., Iso-Touru T., Vilkki J., De Koning D.J., Boichard D., et al. Genome-wide mapping of large deletions and their population-genetic properties in dairy cattle. DNA Research. 2018;25(1):49-59.
DOI: 10.1093/dnares/dsx037
-
21.
Novais C., Tedim A.P., Lanza V.F., Freitas A.R., Silveira E., Escada R., et al. Co-diversification of Enterococcus faecium core genomes and PBP5: evidences of pbp5 horizontal transfer. Front Microbiol. 2016;7:1581.
DOI: 10.3389/fmicb.2016.01581
-
22.
el Amin N., Jalal S., Wretlind B. Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. Antimicrob Agents Chemother. 1999;43(4):947-949.
DOI: 10.1128/AAC.43.4.947
-
23.
Chen H., Wu W., Ni M., Liu Y., Zhang J., Xia F., et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents. 2013;42(4):317-321.
DOI: 10.1016/j.ijantimicag.2013.06.008
-
24.
Guo Y., Tomich A.D., McElheny C.L., Cooper V.S., TaitKamradt A., Wang M., et al. High-level fosfomycin resistance in vancomycin-resistant Enterococcus faecium. Emerg Infect Dis. 2017;23(11):1902.
DOI: 10.3201/eid2311.171130
-
25.
Enne V.I., Delsol A.A., Roe J.M., Bennett P.M. Rifampicin resistance and its fitness cost in Enterococcus faecium. J Antimicrob Chemother. 2004;53(2):203-207.
DOI: 10.1093/jac/dkh044
-
26.
Tran T.T., Panesso D., Gao H., Roh J.H., Munita J.M., Reyes J., et al. Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycinresistant variant arising during therapy. Antimicrob Agents Chemother. 2013;57(1):261-268.
DOI: 10.1128/AAC.01454-12
-
27.
Isnard C., Malbruny B., Leclercq R., Cattoir V. Genetic basis for in vitro and in vivo resistance to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) in Enterococcus faecium. Antimicrob Agents Chemother. 2013;57(9):4463-4469.
DOI: 10.1128/AAC.01030-13
-
28.
Ba X., Harrison E.M., Edwards G.F., Holden M.T., Larsen A.R., Petersen A., et al. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother. 2014;69(3):594-597.
DOI: 10.1093/jac/dkt418
-
29.
Argudín M.A., Roisin S., Nienhaus L., Dodémont M., De Mendonça R., Nonhoff C., Denis O. Genetic diversity among Staphylococcus aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrob Agents Chemother. 2018;62(7):e00091-18.
DOI: 10.1128/AAC.00091-18
-
30.
Truong-Bolduc Q.C., Dunman P.M., Strahilevitz J., Projan S.J., Hooper D.C. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol. 2005;187(7):2395-2405.
DOI: 10.1128/JB.187.7.2395-2405.2005
-
31.
Truong-Bolduc Q.C., Strahilevitz J., Hooper D.C. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(3):11041107.
DOI: 10.1128/AAC.50.3.1104-1107.2006
-
32.
Truong-Bolduc Q.C., Wang Y., Hooper D.C. Tet38 efflux pump contributes to fosfomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2018;62(8);e00927-18.
DOI: 10.1128/AAC.00927-18
-
33.
Chen P.R., Nishida S., Poor C.B., Cheng A., Bae T., Kuechenmeister L., et al. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol Microbiol. 2009;71(1):198211.
DOI: 10.1111/j.1365-2958.2008.06518.x
-
34.
Truong-Bolduc Q.C., Dunman P.M., Eidem T., Hooper D.C. Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus. J Bacteriol. 2011;193(22):6207-6214.
DOI: 10.1128/JB.05847-11
-
35.
Kaatz G.W., McAleese F., Seo S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother. 2005;49(5):1857-1864.
DOI: 10.1128/AAC.49.5.1857-1864.2005
-
36.
McAleese F., Petersen P., Ruzin A., Dunman P.M., Murphy E., Projan S.J., Bradford P.A. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother. 2005;49(5):1865-1871.
DOI: 10.1128/AAC.49.5.1865-1871.2005
-
37.
Fournier B., Aras R., Hooper D.C. Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol. 2000;182(3):664-671.
DOI: 10.1128/jb.182.3.664-671.2000
-
38.
Tanaka M., Wang T., Onodera Y., Uchida Y., Sato K. Mechanism of quinolone resistance in Staphylococcus aureus. J Antimicrob Chemother. 2000;6(3):131-139.
DOI: 10.1007/s101560070010
-
39.
Wali M., Shah M.S., Rehman T.U., Wali H., Hussain M., Zaman L., et al. Detection of linezolid resistance cfr gene among MRSA isolates. J Infect Public Health. 2022;15(10):1142-1146.
DOI: 10.1016/j.jiph.2022.09.002
-
40.
Prunier A.L., Trong H.N.G., Tande D., Segond C., Leclercq R. Mutation of L4 ribosomal protein conferring unusual macrolide resistance in two independent clinical isolates of Staphylococcus aureus. Microb Drug Resist. 2005;11(1):18-20.
DOI: 10.1089/mdr.2005.11.18
-
41.
Malbruny B., Canu A., Bozdogan B., Fantin B., Zarrouk V., Dutka-Malen S., et al. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):22002207.
DOI: 10.1128/AAC.46.7.2200-2207.2002
-
42.
Lannergård J., Norström T., Hughes D. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(5):2059-2065.
DOI: 10.1128/AAC.00871-08
-
43.
Chen T., Zhao L., Liu Y., Wang Y.N., Jian Y., Zhao N., et al. Mechanisms of high-level fosfomycin resistance in Staphylococcus aureus epidemic lineage ST5. J Antimicrob Chemother. 2022;77(10):2816-2826.
DOI: 10.1093/jac/dkac236
-
44.
Aubry-Damon H., Soussy C. J., Courvalin P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1998;42(10):2590-2594.
DOI: 10.1128/AAC.42.10.2590
-
45.
Cui L., Isii T., Fukuda M., Ochiai T., Neoh H.M., Camargo I.L., et al. An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(12):5222-5233.
DOI: 10.1128/AAC.0043710
-
46.
Dubrac S., Boneca I.G., Poupel O., Msadek T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol. 2007;189(22):8257-8269.
DOI: 10.1128/JB.00645-07
-
47.
Zhu J., Liu B., Shu X., Sun B. A novel mutation of walK confers vancomycin-intermediate resistance in methicillin-susceptible Staphylococcus aureus. Int J Med Microbiol. 2021;311(2):151473.
DOI: 10.1016/j.ijmm.2021.151473
-
48.
Sabat A.J., Tinell M., Grundmann H., Akkerboom V., Monaco M., Del Grosso M., et al. Daptomycin resistant Staphylococcus aureus clinical strain with novel nonsynonymous mutations in the mprF and vraS genes: a new insight into daptomycin resistance. Front Microbiol. 2018;9:2705.
DOI: 10.3389/fmicb.2018.02705
-
49.
Katayama Y., Sekine M., Hishinuma T., Aiba Y., Hiramatsu K. Complete reconstitution of the vancomycinintermediate Staphylococcus aureus phenotype of strain Mu50 in vancomycin-susceptible S. aureus. Antimicrob Agents Chemother. 2016;60(6):3730-3742.
DOI: 10.1128/AAC.00420-16
-
50.
Cui L., Neoh H.M., Shoji M., Hiramatsu K. Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(3):1231-1234.
DOI: 10.1128/AAC.01173-08
-
51.
Hu Q., Peng H., Rao X. Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus. Front Microbiol. 2016;7:1601.
DOI: 10.3389/fmicb.2016.01601
-
52.
Ernst C.M., Peschel A. MprF-mediated daptomycin resistance. Int J Med Microbiol. 2019;309(5):359-363.
DOI: 10.1016/j.ijmm.2019.05.010
-
53.
Lasek-Nesselquist E., Lu J., Schneider R., Ma Z., Russo V., Mishra S., et al. Insights into the evolution of Staphylococcus aureus daptomycin resistance from an in vitro bioreactor model. Front Microbiol. 2019;10:345.
DOI: 10.3389/fmicb.2019.00345
-
54.
Maki H., McCallum N., Bischoff M., Wada A., BergerBächi B. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(6):1953-1959.
DOI: 10.1128/AAC.48.6.1953-1959.2004
-
55.
Doménech-Sánchez A., Martínez-Martínez L., HernándezAllés S., del Carmen Conejo M., Pascual A., Tomás J.M., et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother. 2003;47(10):3332-3335.
DOI: 10.1128/AAC.47.10.3332-3335.2003
-
56.
Rocker A., Lacey J.A., Belousoff M.J., Wilksch J.J., Strugnell R.A., Davies M.R., Lithgow T. Global trends in proteome remodeling of the outer membrane modulate antimicrobial permeability in Klebsiella pneumoniae. MBio. 2020;11(2):e00603-20.
DOI: 10.1128/mBio.0060320
-
57.
Doménech-Sánchez A., Hernández-Allés S., MartínezMartínez L., Benedí V.J., Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J Bacteriol. 1999;181(9):2726-2732.
DOI: 10.1128/jb.181.9.2726-2732.1999
-
58.
García-Sureda L., Juan C., Doménech-Sánchez A., Albertí S. Role of Klebsiella pneumoniae LamB porin in antimicrobial resistance. Antimicrob Agents Chemother. 2011;55(4):1803-1805.
DOI: 10.1128/AAC.01441-10
-
59.
Srinivasan V.B., Venkataramaiah M., Mondal A., Vaidyanathan V., Govil T., Rajamohan G. Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. PLoS One. 2012;7(7):e41505.
DOI: 10.1371/journal.pone.0041505
-
60.
Jiménez-Castellanos J.C., Wan Ahmad Kamil W.N.I., Cheung C.H.P., Tobin M.S., Brown J., Isaac, S.G., et al. Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae. J Antimicrob Chemother. 2016;71(7):1820-1825.
DOI: 10.1093/jac/dkw088
-
61.
Xu Q., Jiang, J., Zhu Z., Xu, T., Sheng Z.K., Ye M., et al. Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. Int J Antimicrob Agents. 2019;54(2):223-227.
DOI: 10.1016/j.ijantimicag.2019.06.004
-
62.
Padilla E., Llobet E., Doménech-Sánchez A., MartínezMartínez L., Bengoechea J.A., Albertí S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2010;54(1):177-183.
DOI: 10.1128/AAC.00715-09
-
63.
Veleba M., Higgins P.G., Gonzalez G., Seifert H., Schneiders T. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56(8):4450-4458.
DOI: 10.1128/AAC.00456-12
-
64.
Li J., Zhang H., Ning J., Sajid A., Cheng G., Yuan Z., Hao H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control. 2019;8(1):1-13.
DOI: 10.1186/s13756-019-0489-3
-
65.
Ni R.T., Onishi M., Mizusawa M., Kitagawa R., Kishino T., Matsubara F., et al. The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae. Sci Rep. 2020;10(1):1-10.
DOI: 10.1038/s41598-02067820-x
-
66.
Fu Y., Zhang W., Wang H., Zhao S., Chen Y., Meng F., et al. Specific patterns of gyr A mutations determine the resistance difference to ciprofloxacin and levofloxacin in Klebsiella pneumoniae and Escherichia coli. BMC Infect Dis. 2013;13(1):1-6.
DOI: 10.1186/1471-2334-13-8
-
67.
Chen F.J., Lauderdale T.L., Ho M., Lo H.J. The roles of mutations in gyrA, parC, and ompK35 in fluoroquinolone resistance in Klebsiella pneumoniae. Microb Drug Resist. 2003;9(3):265-271.
DOI: 10.1089/107662903322286472
-
68.
Villa L., Feudi C., Fortini D., García-Fernández A., Carattoli, A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother. 2014;58(3):1707-1712.
DOI: 10.1128/AAC.01803-13
-
69.
Poirel L., Jayol A., Bontron S., Villegas M.V., Ozdamar M., Türkoglu S., Nordmann P. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70(1):75-80.
DOI: 10.1093/jac/dku323
-
70.
Cheng Y.H., Lin T.L., Lin Y.T., Wang J.T. Amino acid substitutions of CrrB responsible for resistance to colistin through CrrC in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2016;60(6):3709-3716.
DOI: 10.1128/AAC.00009-16
-
71.
Lu P.L., Hsieh Y.J., Lin J.E., Huang J.W., Yang T.Y., Lin L., Tseng S.P. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extendedspectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents. 2016;48(5):564-568.
DOI: 10.1016/j.ijantimicag.2016.08.013
-
72.
Kahan F.M., Kahan J.S., Cassidy P.J., Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235(0):364-386.
DOI: 10.1111/j.1749-6632.1974.tb43277.x
-
73.
Zurfluh K., Treier A., Schmitt K., Stephan R. Mobile fosfomycin resistance genes in Enterobacteriaceae – an increasing threat. Microbiologyopen. 2020;9(12):e1135.
DOI: 10.1002/mbo3.1135
-
74.
Couce A., Briales A., Rodríguez-Rojas A., Costas C., Pascual Á., Blázquez J. Genomewide overexpression screen for fosfomycin resistance in Escherichia coli: MurA confers clinical resistance at low fitness cost. Antimicrob Agents Chemother. 2012;56(5):2767-2769.
DOI: 10.1128/AAC.06122-11
-
75.
Kyriakidis I., Vasileiou E., Pana Z.D., Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021;10(3):373.
DOI: 10.3390/pathogens10030373
-
76.
Jacoby G.A. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161-182.
DOI: 10.1128/CMR.00036-08
-
77.
Rodríguez-Martínez J.M., Poirel L., Nordmann P. Genetic and functional variability of AmpC-type β-lactamases from Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(11):4930-4933.
DOI: 10.1128/AAC.0042710
-
78.
Gordon N.C., Wareham D.W. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010;35:219-226.
DOI: 10.1016/j.ijantimicag.2009.10.024
-
79.
Iyer R., Moussa S.H., Durand-Reville T.F., Tommasi R., Miller A. Acinetobacter baumannii OmpA is a selective antibiotic permeant porin. ACS Infect Dis. 2017;4(3):373381.
DOI: 10.1021/acsinfecdis.7b00168
-
80.
Catel-Ferreira M., Coadou G., Molle V., Mugnier P., Nordmann P., Siroy A., et al. Structure-function relationships of CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. J Antimicrob Chemother. 2011;66(9):2053-2056.
DOI: 10.1093/jac/dkr267
-
81.
Marchand I., Damier-Piolle L., Courvalin P., Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother. 2004;48(9):3298-3304.
DOI: 10.1128/AAC.48.9.3298-3304.2004
-
82.
Coyne S., Courvalin P., Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947-953.
DOI: 10.1128/AAC.01388-10
-
83.
Xu C.F., Bilya S.R., Xu W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect. 2019;30:100549.
DOI: 10.1016/j.nmni.2019.100549
-
84.
Rosenfeld N., Bouchier C., Courvalin P., Périchon B. Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother. 2012;56(5):2504-2510.
DOI: 10.1128/AAC.06422-11
-
85.
Coyne S., Rosenfeld N., Lambert T., Courvalin P., Périchon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(10):4389-4393.
DOI: 10.1128/AAC.0015510
-
86.
Li H., Wang Q., Wang R., Zhang Y., Wang X., Wang H. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii. Medicine (Baltimore). 2017;96(24):e7188.
DOI: 10.1097/MD.0000000000007188
-
87.
Aldred K.J., Kerns R.J., Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):15651574.
DOI: 10.1021/bi5000564
-
88.
Nodari C.S., Fuchs S.A., Xanthopoulou K., Cayô R., Seifert H., Gales A.C., et al. pmrCAB Recombination events among colistin-susceptible and-resistant Acinetobacter baumannii clinical isolates belonging to international clone 7. mSphere. 2021;6(6):e0074621.
DOI: 10.1128/msphere.00746-21
-
89.
Sun B., Liu H., Jiang Y., Shao L., Yang S., Chen D. New mutations involved in colistin resistance in Acinetobacter baumannii. mSphere. 2020;5(2):e00895-19
DOI: 10.1128/mSphere.00895-19
-
90.
Moffatt J.H., Harper M., Boyce J.D. Mechanisms of polymyxin resistance. Adv Exp Med Biol. 2019;1145:5571.
DOI: 10.1007/978-3-030-16373-0_5
-
91.
Bojkovic J., Richie D.L., Six D.A., Rath C.M., Sawyer W.S., Hu Q., Dean C.R. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J Bacteriol. 2016;198(4):731-741.
DOI: 10.1128/JB.00639-15
-
92.
Glen K.A., Lamont I.L. β-lactam resistance in Pseudomonas aeruginosa: current status, future prospects. Pathogens. 2021;10(12):1638.
DOI: 10.3390/pathogens10121638
-
93.
López-Causapé C., Sommer L.M., Cabot G., Rubio R., Ocampo-Sosa A.A., Johansen H.K., et al. Evolution of the Pseudomonas aeruginosa mutational resistome in an international cystic fibrosis clone. Sci Rep. 2017;7(1):5555.
DOI: 10.1038/s41598-017-05621-5
-
94.
Torrens G., Hernández S.B., Ayala J.A., Moya B., Juan C., Cava F., Oliver A. Regulation of AmpC-driven β-lactam resistance in Pseudomonas aeruginosa: different pathways, different signaling. mSystems, 2019;4(6):e00524-19.
DOI: 10.1128/mSystems.00524-19
-
95.
Ropy A., Cabot G., Sánchez-Diener I., Aguilera C., Moya B., Ayala J.A., Oliver A. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure. Antimicrob Agents Chemother. 2015;59(7):3925-3934.
DOI: 10.1128/AAC.05150-14
-
96.
Bagge N., Ciofu O., Hentzer M., Campbell J.I., Givskov M., Hoiby N. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother. 2002;46(11):3406-3411.
DOI: 10.1128/AAC.46.11.3406-3411.2002
-
97.
Juan C., Maciá M.D., Gutiérrez O., Vidal C., Pérez J.L., Oliver A. Molecular mechanisms of β-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2005;49(11):4733-4738.
DOI: 10.1128/AAC.49.11.4733-4738.2005
-
98.
Rodriguez-Martinez J.M., Poirel L., Nordmann P. Extendedspectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(5):1766-1771.
DOI: 10.1128/AAC.01410-08
-
99.
Toussaint K.A., Gallagher J.C. β-Lactam/β-lactamase inhibitor combinations: from then to now. Ann Pharmacother. 2015;49(1):86-98.
DOI: 10.1177/1060028014556652
-
100.
Li H., Luo Y.F., Williams B.J., Blackwell T.S., Xie C.M. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012;302(2):63-68.
DOI: 10.1016/j.ijmm.2011.10.001
-
101.
Soundararajan G., Bhamidimarri S.P., Winterhalter M. Understanding carbapenem translocation through OccD3 (OpdP) of Pseudomonas aeruginosa. ACS Chem Biol. 2017;12(6):1656-1664.
DOI: 10.1021/acschembio.6b01150
-
102.
Eren E., Vijayaraghavan J., Liu J., Cheneke B.R., Touw D.S., Lepore B.W., et al. Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol. 2012;10(1):e1001242.
DOI: 10.1371/journal.pbio.1001242
-
103.
Ude J., Tripathi V., Buyck J.M., Söderholm S., Cunrath O., Fanous J., et al. Outer membrane permeability: antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2021;118(31):e2107644118.
DOI: 10.1073/pnas.2107644118
-
104.
Boutoille D., Corvec S., Caroff N., Giraudeau C., Espaze E., Caillon J., et al. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. FEMS Microbiol Lett. 2004;230(1):143-146.
DOI: 10.1016/S03781097(03)00882-6
-
105.
Lister P.D., Wolter D.J., Hanson N.D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.
DOI: 10.1128/CMR.00040-09
-
106.
Li X.Z., Zhang L., Srikumar R., Poole K. β-Lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1998;42(2):399-403.
DOI: 10.1128/AAC.42.2.399
-
107.
Braz V.S., Furlan J.P.R., Fernandes A.F.T., Stehling E.G. Mutations in NalC induce MexAB-OprM overexpression resulting in high level of aztreonam resistance in environmental isolates of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2016;363(16):fnw166.
DOI: 10.1093/femsle/fnw166
-
108.
Purssell A., Poole K. Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology. 2013;159(Pt. 10):2058-2073.
DOI: 10.1099/mic.0.069286-0
-
109.
Llanes C., Köhler T., Patry I., Dehecq B., Van Delden C., Plésiat P. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother. 2011;55(12):5676-5684.
DOI: 10.1128/AAC.00101-11
-
110.
Morita Y., Tomida J., Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol. 2012;3:408.
DOI: 10.3389/fmicb.2012.00408
-
111.
Bruchmann S., Dötsch A., Nouri B., Chaberny I.F., Häussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother. 2013;57(3):1361-1368.
DOI: 10.1128/AAC.01581-12
-
112.
Moskowitz S.M., Ernst R.K., Miller S.I. PmrAB, a twocomponent regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol. 2004;186(2):575-579.
DOI: 10.1128/JB.186.2.575579.2004
-
113.
Miller A.K., Brannon M.K., Stevens L., Johansen H.K., Selgrade S.E., Miller S.I., et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2011;55(12):5761-5769.
DOI: 10.1128/AAC.05391-11
-
114.
Lee J.Y., Ko K.S. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 2014;78(3):271-276.
DOI: 10.1016/j.diagmicrobio.2013.11.027
-
115.
Gutu A.D., Sgambati N., Strasbourger P., Brannon M.K., Jacobs M.A., Haugen E., et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204-2215.
DOI: 10.1128/AAC.02353-12
-
116.
Muller C., Plésiat P., Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1211-1221.
DOI: 10.1128/AAC.01252-10
-
117.
Castaneda-García A., Rodríguez-Rojas A., Guelfo J.R., Blázquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol. 2009;191(22):6968-6974.
DOI: 10.1128/JB.00748-09
-
118.
Guérin F., Isnard C., Cattoir V., Giard J.C. Complex regulation pathways of AmpC-mediated β-lactam resistance in Enterobacter cloacae complex. Antimicrob Agents Chemother. 2015;59(12):7753-7761.
DOI: 10.1128/AAC.01729-15
-
119.
Masi M., Vergalli J., Ghai I., Barba-Bon A., Schembri T., Nau W.M., et al. Cephalosporin translocation across enterobacterial OmpF and OmpC channels, a filter across the outer membrane. Commun Biol. 2022;5(1):1059.
DOI: 10.1038/s42003-022-04035-y
-
120.
Szabó D., Silveira F., Hujer A.M., Bonomo R.A., Hujer K. M., Marsh J.W., et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother. 2006;50(8):2833-2835.
DOI: 10.1128/AAC.01591-05
-
121.
Molitor A., James C.E., Fanning S., Davin-Regli A. Ram locus is a key regulator to trigger multidrug resistance in Enterobacter aerogenes. J Med Microbiol. 2018;67(2):148-159.
DOI: 10.1099/jmm.0.000667
-
122.
Pérez A., Poza M., Fernández A., del Carmen Fernández M., Mallo S., Merino M., et al. Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother. 2012;56(4):2084-2090.
DOI: 10.1128/AAC.05509-11
-
123.
Weston N., Sharma P., Ricci V., Piddock L.J. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol. 2018;169(7-8):425-431.
DOI: 10.1016/j.resmic.2017.10.005
-
124.
Guillard T., Cholley P., Limelette A., Hocquet D., Matton L., Guyeux C., et al. Fluoroquinolone resistance mechanisms and population structure of Enterobacter cloacae non-susceptible to ertapenem in North-Eastern France. Front Microbiol. 2015;6:1186.
DOI: 10.3389/fmicb.2015.01186
-
125.
Wang J., Wu H., Mei C.Y., Wang Y., Wang Z.Y., Lu M.J., et al. Multiple mechanisms of tigecycline resistance in Enterobacteriaceae from a pig farm, China. Microbiol Spectr. 2021;9(2):e00416-21.
DOI: 10.1128/Spectrum.00416-21
-
126.
Doijad S.P., Gisch N., Frantz R., Kumbhar B.V., Falgenhauer J., Imirzalioglu C., et al. Resolving colistin resistance and heteroresistance in Enterobacter species. Nat Commun. 2023;14(1):140.
DOI: 10.1038/s41467022-35717-0