Аннотация
Инфекционно-воспалительные осложнения в дыхательных путях, вызванные микроорганизмами комплекса Burkholderia cepacia, являются основной причиной смертности среди пациентов с муковисцидозом. Природные и приобретенные механизмы резистентности позволяют патогенам комплекса Burkholderia cepacia адаптироваться к условиям регулярной антибиотикотерапии, что обуславливает необходимость применения антибактериальных препаратов с альтернативным механизмом действия. Исследования значения железа как незаменимого фактора метаболизма бактерий и способов его приобретения из окружающей среды способствовали разработке нового антибиотика из группы цефалоспоринов – цефидерокола. В структуре цефидерокола формируется фрагмент, имитирующий сидерофоры – хелатирующие молекулы, обеспечивающий транспорт ионов железа во внутренние среды микроорганизма. Уникальный механизм, описываемый в научной литературе как «троянский конь», позволяет молекулам антибиотиков, конъюгированных с сидерофорами, эффективно проникать внутрь бактериальной клетки, оказывая бактерицидный эффект. Таким образом, цефидерокол может быть использован для лечения инфекционных осложнений в легких у больных муковисцидозом, вызванных бактериями комплекса Burkholderia cepacia, в том числе полирезистентными штаммами. Спектр активности цефидерокола также позволяет применять данный антибиотик в лечении инфекций, вызванных внутрибольничными штаммами грамотрицательных бактерий порядка Enterobacterales, родов Acinetobacter, Pseudomonas и Stenotrophomonas
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, Россия
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, Россия
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, Россия
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, Россия
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, Россия
-
1.
Kozlov R.S., Stetsiouk O.U., Andreeva I.V. Ceftazidimeavibactam: new rules for the game against multidrug-resistant gram-negative bacteria. Klinicheskaja mikrobiologija i antimikrobnaja khimioterapija. 2018;20(1):24-34. Russian. (Козлов Р.С., Стецюк О.У., Андреева И.В. Цефтазидим-авибактам: новые «правила игры» против полирезистентных грамотрицательных бактерий. Клиническая микробиология и антимикробная химиотерапия. 2018;20(1):24-34.)
DOI: 10.36488/cmac.2018.1.24-34
-
2.
Khokhlova O.Е., Larionova I.A., Perianova O.V., Kozlov R.S., Edelstein M.V., Modestov A.A., et al. The mechanisms of antibiotic resistance in major pathogens of purulent-inflammatory complications in cancer patients. Infekcija i immunitet. 2021;11(2):324-336. Russian. (Хохлова О.Е., Ларионова И.А., Перьянова О.В., Козлов Р.С., Эйдельштейн М.В., Модестов А.А. и соавт. Механизмы антибиотикорезистентности основных возбудителей гнойно-воспалительных осложнений у онкологических больных. Инфекция и иммунитет. 2021;11(2):324-336.)
DOI: 10.15789/2220-7619TMO-1379
-
3.
Naehrig S., Chao C.M., Naehrlich L. Cystic fibrosis. Dtsch Arztebl Int. 2017;114(33-34):564-574.
DOI: 10.3238/arztebl.2017.0564
-
4.
Bierlaagh M.C., Muilwijk D., Beekman J.M., van der Ent C.K. A new era for people with cystic fibrosis. Eur J Pediatr. 2021;180(9):2731-2739.
DOI: 10.1007/s00431-021-04168-y
-
5.
Jennings M.T, Flume P.A. Cystic fibrosis: translating molecular mechanisms into effective therapies. Ann Am Thorac Soc. 2018;15(8):897-902.
DOI: 10.1513/AnnalsATS.201802-075FR
-
6.
Françoise A., Héry-Arnaud G. The microbiome in cystic fibrosis pulmonary disease. Genes (Basel). 2020;11(5):536.
DOI: 10.3390/genes11050536
-
7.
Blanchard A.C., Waters V.J. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40(6):727-736.
DOI: 10.1055/s-0039-1698464
-
8.
Goodlet K.J., Nailor M.D., Omar A., Huang J.L., LiPuma J.J., Walia R., et al. Successful lung re-transplant in a patient with cepacia syndrome due to Burkholderia ambifaria. J Cyst Fibros. 2019;18(1):e1-e4.
DOI: 10.1016/j.jcf.2018.08.011
-
9.
Hauser N., Orsini J. Cepacia syndrome in a non-cystic fibrosis patient. Case Rep Infect Dis. 2015;2015:537627.
DOI: 10.1155/2015/537627
-
10.
Kalferstova L., Kolar M., Fila L., Vavrova J., Drevinek P. Gene expression profiling of Burkholderia cenocepacia at the time of cepacia syndrome: loss of motility as a marker of poor prognosis? J Clin Microbiol. 2015;53(5):1515-1522.
DOI: 10.1128/JCM.03605-14
-
11.
Agnoli K., Schwager S., Uehlinger S., Vergunst A., Viteri D.F., Nguyen D.T., et al. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Mol Microbiol. 2012;83(2):362-378.
DOI: 10.1111/j.1365-2958.2011.07937.x
-
12.
Leitão J.H., Sousa S.A., Ferreira A.S., Ramos C.G., Silva I.N., Moreira L.M. Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol. 2010;87(1):31-40.
DOI: 10.1007/s00253-010-2528-0
-
13.
Poirel L., Rodriguez-Martinez J.M., Plésiat P., Nordmann P. Naturally occurring Class A β-lactamases from the Burkholderia cepacia complex. Antimicrob Agents Chemother. 2009;53(3):876-882.
DOI: 10.1128/AAC.00946-08
-
14.
Everaert A., Coenye T. Effect of β-Lactamase inhibitors on in vitro activity of β-Lactam antibiotics against Burkholderia cepacia complex species. Antimicrob Resist Infect Control. 2016;5:44.
DOI: 10.1186/s13756-016-0142-3
-
15.
Buroni S., Matthijs N., Spadaro F., Van Acker H., Scoffone V.C., Pasca M.R., et al. Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells. Antimicrob Agents Chemother. 2014;58(12):7424-7429.
DOI: 10.1128/AAC.03800-14
-
16.
Podnecky N.L., Rhodes K.A., Schweizer H.P. Efflux pumpmediated drug resistance in Burkholderia. Front Microbiol. 2015;(6):305.
DOI: 10.3389/fmicb.2015.00305
-
17.
Rhodes K.A., Schweizer H.P. Antibiotic resistance in Burkholderia species. Drug Resist Updat. 2016;28:82-90.
DOI: 10.1016/j.drup.2016.07.003
-
18.
Shommu N.S., Vogel H.J., Storey D.G. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol. 2015;6:668.
DOI: 10.3389/fmicb.2015.00668
-
19.
Berlutti F., Morea C., Battistoni A., Sarli S., Cipriani P., Superti F., et al. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol. 2005;18(4):661-670.
DOI: 10.1177/039463200501800407
-
20.
Sass A.M., Coenye T. Low iron-induced small RNA BrrF regulates central metabolism and oxidative stress responses in Burkholderia cenocepacia. PLoS One. 2020;15(7):e0236405.
DOI: 10.1371/journal.pone.0236405
-
21.
Tyrrell J., Whelan N., Wright C., Sá-Correia I., McClean S., Thomas M., et al. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia. Biometals. 2015;28(2):367-380.
DOI: 10.1007/s10534015-9840-1
-
22.
Butt A.T., Thomas M.S. Iron acquisition mechanisms and their role in the virulence of Burkholderia species. Front Cell Infect Microbiol. 2017;7:460.
DOI: 10.3389/fcimb.2017.00460
-
23.
Cornelis P., Wei Q., Andrews S.C., Vinckx T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics. 2011;3(6):540-549.
DOI: 10.1039/c1mt00022e
-
24.
Wang F., Yao J., Tian L., Zhou Y., Chen H., Chen H., et al. Microcalorimetric investigation of the toxic action of ammonium ferric (III) sulfate on the metabolic activity of pure microbes. Environ Toxicol Pharmacol. 2008;25(3):351357.
DOI: 10.1016/j.etap.2007.11.004
-
25.
Sato T., Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(7):S538-S543.
DOI: 10.1093/cid/ciz826
-
26.
Wu J.Y., Srinivas P., Pogue J.M. Cefiderocol: a novel agent for the management of multidrug-resistant gram-negative organisms. Infect Dis Ther. 2020;9(1):17-40.
DOI: 10.1007/s40121-020-00286-6
-
27.
Syed Y.Y. Cefiderocol: a review in serious gram-negative bacterial infections. Drugs. 2021;81(13):1559-1571.
DOI: 10.1007/s40265-021-01580-4
-
28.
Ito A., Sato T., Ota M., Takemura M., Nishikawa T., Toba S., et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob Agents Chemother. 2017;62(1):e01454-17.
DOI: 10.1128/AAC.01454-17
-
29.
Albano M., Karau M.J., Schuetz A.N., Patel R. Comparison of agar dilution to broth microdilution for testing in vitro activity of cefiderocol against Gram-negative bacilli. J Clin Microbiol. 2020;59:e00966-20.
DOI: 10.1128/JCM.00966-20
-
30.
Ito A., Nishikawa T., Matsumoto S., Yoshizawa H., Sato T., Nakamura R., et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:7396-7401.
DOI: 10.1128/AAC.01405-16
-
31.
Simner P.J., Patel R. Cefiderocol antimicrobial susceptibility testing considerations: the Achilles’ heel of the Trojan horse? J Clin Microbiol. 2020;59(1):e00951-20.
DOI: 10.1128/JCM.00951-20