Аннотация
Достигнутые благодаря вакцинации успехи в профилактике гепатита В и инфекции, вызванной вирусом папилломы человека, открывают возможности для разработки вакцин против инфекций, передающихся половым путем (ИППП), таких как гонорея, сифилис, хламидиоз, вирус простого герпеса, вирус иммунодефицита человека и вирус Зика. Данная статья посвящена обзору современного состояния разработки вакцин для профилактики этих инфекций.
Имперский колледж, Лондон, Великобритания
-
1.
WHO. Sexually transmitted infections (STIs). Available at: www.who.int/news-room/fact-sheets/detail/sexually-transmittedinfections-(stis)
-
2.
Semchenko E.A., Tan A., Borrow R., Seib K.L. The serogroup B meningococcal vaccine Bexsero elicits antibodies to Neisseria gonorrhoeae. Clin Infect Dis. 2018;69(7):1101-1111.
DOI: 10.1093/cid/ciy1061
-
3.
Petousis-Harris H. Impact of meningococcal group B OMV vaccines, beyond their brief. Hum Vaccin Immunother. 2018;14(5):10581063.
DOI: 10.1080/21645515.2017.1381810
-
4.
Institute of Environmental Science and Research Ltd. Sexually transmitted infections in New Zealand: annual surveillance report 2014. Porirua (New Zealand); 2015. Available at: https://surv.esr.cri.nz/surveillance/annual_sti.php?we_objectID=4844
-
5.
Régnier S., Huels J. Potential impact of vaccination against Neisseria meningitidis on Neisseria gonorrhoeae in the United States: results from a decision-analysis model. Hum Vaccin Immunother. 2014;10(12):3737-3745.
DOI: 10.4161/hv.36221
-
6.
Petousis-Harris H., Radcliff F.J. Exploitation of Neisseria meningitidis group B OMV vaccines against N. gonorrhoeae to inform the development and deployment of effective gonorrhoea vaccines. Front Immunol. 2019;10:683.
DOI: 10.3389/fimmu.2019.00683
-
7.
Cameron C. Syphilis vaccine development: requirements, challenges, and opportunities. Sex Transm Dis. 2018;45(9):S17-S19.
DOI: 10.1097/OLQ.0000000000000831
-
8.
Lithgow K.V., Cameron C.E. Vaccine development for syphilis. Expert Rev Vaccines. 2017;16(1):37-44.
DOI: 10.1080/14760584.2016.1203262
-
9.
Miller J.N. Immunity in experimental syphilis. VI. Successful vaccination of rabbits with Treponema pallidum, Nichols strain, attenuated by irradiation. J Immunol. 1973;110:1206-1215.
-
10.
Kao W.-C.A., Petrosova H., Ebady R., Lithgow K.V., Rojas P., Zhang Y., et al. Identification of Tp0751 (Pallilysin) as a Treponema pallidum vascular adhesin by heterologous expression in the Lyme disease Spirochete. Sci Rep. 2017;7(1):1538.
DOI: 10.1038/s41598-017-01589-4
-
11.
Parveen N., Fernandez M.C., Haynes A.M., Zhang R.L., Godornes B.C., Centurion-Lara A., et al. Non-pathogenic Borrelia burgdorferi expressing Treponema pallidum TprK and Tp0435 antigens as a novel approach to evaluate syphilis vaccine candidates. Vaccine. 2019;37(13):1807-1818.
DOI: 10.1016/j.vaccine.2019.02.022
-
12.
Zheng K., Zu M., Xiao Y., Luo H., Xir Y., Yu J., et al. Immunogenicity and protective efficacy against Treponema pallidum in New Zealand rabbits immunized with plasmid DNA encoding flagellin. Emerg Microbes Infect. 2018;7(1):177.
DOI: 10.1038/s41426018-0176-0
-
13.
Poston T.B., Lee D.E., Darville T., Zhoong W., Dong L., O’Connell C.M., et al. Cervical cytokines associated with Chlamydia trachomatis susceptibility and protection. J Infect Dis. 2019;220(2):330-339.
DOI: 10.1093/infdis/jiz087
-
14.
Zhong G., Brunham R.C., de la Maza L., Darville T., Deal C. National Institute of Allergy and Infectious Diseases workshop report: “Chlamydia vaccines: the way forward”. Vaccine. 2017; pii: S0264-410X(17)31483-4.
DOI: 10.1016/j.vaccine.2017.10.075
-
15.
Phillips S., Quigley B.L., Timms P. Seventy years of Chlamydia vaccine research – limitations of the past and directions for the future. Front Microbiol. 2019;10:70.
DOI: 10.3389/fmicb.2019.00070
-
16.
Poston T.B., Darville T. Chlamydia trachomatis: protective adaptive responses and prospects for a vaccine. Curr Top Microbiol Immunol. 2018;412:217-237.
DOI: 10.1007/82_2016_6
-
17.
Poston T.B., Gottlieb S.L., Darville T. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine. 2017;37(50):7289-7294.
DOI: 10.1016/j.vaccine.2017.01.023
-
18.
Olsen A.W., Follmann F., Erneholm K., Rosenkrands I., Andersen P. Protection against Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the Major Outer Membrane Protein. J Infect Dis. 2015;212(6):978-989.
DOI: 10.1093/infdis/jiv137
-
19.
Bøje S., Olsen A.W., Erneholm K., Agerholm J.S., Jungersen G., Andersen P., Follmann F. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ+ CMI responses protects against a genital infection in minipigs. Immunol Cell Biol. 2016;94(2):185-195.
DOI: 10.1038/icb.2015.79
-
20.
Olsen A.W., Lorenzen E.K., Rosenkrands I., Follmann F., Andersen P. Protective effect of vaccine promoted neutralizing antibodies against the intracellular pathogen Chlamydia trachomatis. Front Immunol. 2017;8:1652.
DOI: 10.3389/fimmu.2017.01652
-
21.
Fattom A.I. Development of a nanoemulsion-based vaccine for chlamydia infection. Available at: http://grantome.com/grant/NIH/R43-AI134168-01A1.
-
22.
Karunakaran K.P., Yu H., Jiang X., Chan Q., Moon K.-M., Foster L.J., et al. Outer membrane proteins preferentially load MHC class II peptides: implications for a Chlamydia trachomatis T cell vaccine. Vaccine. 2015;33(18):2159-2166.
DOI: 10.1016/j.vaccine.2015.02.055
-
23.
Stary G., Olive A., Radovic-Moreno A.F., Gondek D., Alvarez D., Basto P.A., et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015;348(6241):aaa8205.
DOI: 10.1126/science.aaa8205
-
24.
Garmory H.S., Leckenby M.W., Griffin K.F., Elvin S.J., Taylor R.R., Hartley M.G., et al. Antibiotic-free plasmid stabilization by operator-repressor titration for vaccine delivery by using live Salmonella enterica serovar typhimurium. Infect Immun. 2005;73(4):2005-2011.
DOI: 10.1128/IAI.73.4.20052011.2005
-
25.
Kari L., Whitmire W.M., Olivares-Zavaleta N., Goheen M.M., Taylor L.D., Carlson J.H., et al. A live-attenuated chlamydial vaccine protects against trachoma in non-human primates. J Exp Med. 2011;208:2217-2223.
DOI: 10.1084/jem.20111266
-
26.
Sahu R., Verma R., Dixit S., Igietseme J.U., Black C.M., Duncan S., et al. Future human Chlamydia vaccine: potential of selfadjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines. 2019;17(3):217-227.
DOI: 10.1080/14760584.2018.1435279
-
27.
Corey L., Langenberg A., Ashley R., Sekulovich R.E., Lzu A.L., Douglas J.M., et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection. Two randomized controlled trials. JAMA. 1999;282(4):331-340.
DOI: 10.1001/jama.282.4.331
-
28.
Mascola J.R. Herpes simplex virus vaccines – why don’t antibodies protect? JAMA. 1999;282(4):379-380.
DOI: 10.1001/jama.282.4.379
-
29.
Strasser J.E., Arnold R.L., Pachuk C., Higgins T.J., Bernstein D.I. Herpes simplex virus DNA vaccine efficacy: effect of glycoprotein D plasmid constructs. J Infect Dis. 2000;182(5):1304-1210.
DOI: 10.1086/315878
-
30.
Johnston C., Gottlieb S.L., Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948-2952.
DOI: 10.1016/j.vaccine.2015.12.076
-
31.
Bernstein D.I., Wald A., Warren T., Fife K., Tyring S., Lee P., et al. Therapeutic vaccine for genital herpes simplex virus-2 infection: findings from a randomized trial. J Infect Dis. 2017;215(6):856864.
DOI: 10.1093/infdis/jix004
-
32.
Van Wagoner N., Fife K., Leone P.A., Bernstein D.I., Warren T., Panther L., et al. Effects of different doses of GEN-003, a therapeutic vaccine for genital herpes simplex virus-2, on viral shedding and lesions: results of a randomized placebo-controlled trial. J Infect Dis. 2018;218(12):1890-1899.
DOI: 10.1093/infdis/jiy415
-
33.
Stanfield B.A., Rider P., Caskey J., del Piero F., Kousoulas K.G. Intramuscular vaccination of guinea pigs with the liveattenuated human herpes simplex vaccine VC2 stimulates a transcriptional profile of vaginal TH17 and regulatory Tr1 responses. Vaccine. 2018;36(20):2842-2849.
DOI: 10.1016/j.vaccine.2018.03.075
-
34.
Dyer O. FDA launches criminal investigation of unauthorised herpes vaccine trial. BMJ. 2018;361:k1753.
DOI: 10.1136/bmj.k1763
-
35.
Rodger A.J., Cambiano V., Bruun T., Vernazza P., Collins S., van Lunzen J., et al. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIVpositive partner is using suppressive antiretroviral therapy. JAMA. 2016;316(2):171-181.
DOI: 10.1001/jama.2016.5148
-
36.
Rodger A.J., Cambiano V., Bruun T., Vernazza P., Collins S., Degen O., et al. Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study. Lancet. 2019;393(10189):2428-2438.
DOI: 10.1016/S01406736(19)30418-0
-
37.
Teasdale C.A., Marais B.J., Abrams E.J. HIV: prevention of mother-to-child transmission. BMB Clin Evid. 2011;2011:0909. PMID: 21477392
-
38.
Counotte M.J., Kim C.R., Wang J., Bernstein K., Deal C.D., Broutet N., Low N. Sexual transmission of Zika virus and other flaviviruses: a living systematic review. PLoS Med. 2018;15(7):e1002611.
DOI: 10.1371/journal.pmed.1002611
-
39.
Mead P.S., Duggal N.K., Hook S.A., Delorey M., Fischer M., McGuire D.O., et al. Zika virus shedding in semen in symptomatic infected men. N Engl J Med. 2018;378:1377-1385.
DOI: 10.1056/NEJMoa1711038
-
40.
WHO Vaccine Pipeline Tracker, 2019. Available at: https://docs.google.com/spreadsheets/d/19otvINcayJURCMg76xWO4KvuyedYbMZDcXqbyJGdcZM/pubhtml
-
41.
Sakkas H., Bozidis P., Giannakopoulos X., Sofikitis N., Papadopoulou C. An update on sexual transmission of Zika virus. Pathogens. 2018;7(3):66.
DOI: 10.3390/pathogens7030066