Аннотация
Синегнойная палочка (Pseudomonas aeruginosa) является опасным оппортунистическим патогеном. Одно из самых отрицательных клинически значимых свойств P. aeruginosa связано со способностью быстро приобретать устойчивость к антимикробным препаратам. Данный обзор представляет собой анализ современной научной литературы о молекулярно-генетических механизмах резистентности P. aeruginosa к антибиотикам. Рассмотрены вопросы приобретения и регуляции антибиотикорезистентности. Знание механизмов и регуляции резистентности является важной теоретической базой для выбора оптимальной антибиотикотерапии и планирования противоэпидемических мероприятий при синегнойной инфекции.
ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России, Москва, Россия
ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России, Москва, Россия
ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России, Москва, Россия
-
1.
Kozlov R.S., Golub A.V., Dekhnich A.V., SMART Study Group. Antimicrobial Resistance of Gram-negative Microorganisms Causing Complicated Intraabdominal Infections in Russia. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2015;17(3):227-234. Russian. (Козлов Р.С., Голуб А.В., Дехнич А.В., исследовательская группа SMART. Антибиотикорезистентность грамотрицательных возбудителей осложнённых интраабдоминальных инфекций в России. Клиническая микробиология и антимикробная химиотерапия. 2015;17(3):227-234.).
-
2.
Mayr F.B., Yende S., Angus D.C. Epidemiology of severe sepsis. Virulence. 2014;5(1):4-11.
-
3.
Doring G., Conway S.P., Heijerman H.G., et al. J. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16(4):749-767.
-
4.
Hidron A. I., Edwards J. R., Patel J., National Healthcare Safety Network Team. The National Healthcare Safety Network Team and Participating National Healthcare Safety Network Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29:996-1011.
-
5.
Djordjevic Z., Folic M.M., Zivic Z., Markovic V., Jankovic S.M. Nosocomial urinary tract infections caused by Pseudomonas aeruginosa and Acinetobacter species: Sensitivity to antibiotics and risk factors. Am J Infect Control. 2013;41(12):1182-1187.
-
6.
Brewer S.C., Wunderink R.G., Jones C.B., Leeper K.V. Ventilator‐associated pneumonia due to Pseudomonas aeruginosa. Chest. 1996;109:1019-1029.
-
7.
Rello J., Rue M., Jubert P., et al. Survival in patients with nosocomial pneumonia: impact of the severity of illness and the etiologic agent. Crit Care Med. 1997;25:1862-1867.
-
8.
Edelstein M.V., Sukhorukova M.V., Skleenova E.Yu., and the «MARATHON» study group. Antimicrobial resistance of nosocomial Pseudomonas aeruginosa isolates in Russia: results of multicenter epidemiological study «MARATHON» 2013-2014. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2017;19(1):37-41. Russian. (Эйдельштейн М.В., Сухорукова М.В., Склеенова Е.Ю. и исследовательская группа «МАРАФОН». Антибиотикорезистентность нозокомиальных штаммов Pseudomonas aeruginosa в стационарах России: результаты многоцентрового эпидемиологического исследования «МАРАФОН» в 2013-2014 гг. Клиническая микробиология и антимикробная химиотерапия. 2017;19(1):37-41.).
-
9.
Weiner L.M., Webb A.K., Limbago B., et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-1301.
-
10.
Lazareva A.V., Tchebotar I.V., Kryzhanovskaya O.A., Tchebotar V.I., Mayanskiy N.A. Pseudomonas aeruginosa: Pathogenicity, Pathogenesis and Diseases. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2015;17(3):170-186. Russian. (Лазарева А.В., Чеботарь И.В., Крыжановская О.А., Чеботарь В.И., Маянский Н.А. Pseudomonas aeruginosa: патогенность, патогенез и патология. Клиническая микробиология и антимикробная химиотерапия. 2015;17(3):170-186.).
-
11.
Stover C.K., Pham X.Q., Erwin A.L., et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959-964.
-
12.
Safaei H.G., Moghim S., Isfahani B.N., et al. Distribution of the Strains of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa Isolates from Burn Patients. Adv Biomed Res. 2017;6:74.
-
13.
Colomb-Cotinat M., Lacoste J., Brun-Buisson C., et al. Estimating the morbidity and mortality associated with infections due to multidrugresistant bacteria (MDRB), France, 2012. Antimicrob Resist Infect Control. 2016;5(1):56.
-
14.
The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available at: www.eucast.org.
-
15.
The Clinical Laboratory Standards Institute (CLSI). Available at: www.clsi. org.
-
16.
Hancock R.E.W. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998;27(1):S93-99.
-
17.
Cox G., Wright G.D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol. 2013;303(6):287-292.
-
18.
Kong K.F., Jayawardena S.R., Del Puerto A., et al. Characterization of poxB, a chromo-somal-encoded Pseudomonas aeruginosa oxacillinase. Gene. 2005;358:82-92.
-
19.
Jana S., Deb J.K. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol. 2006;70:140-150.
-
20.
Arzanlou M., Chai W.C., Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 2017;61(1):49-59.
-
21.
Rice L.B. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc. 2012;87(2):198-208.
-
22.
Rostami S., Sheikh A. F., Shoja S., et al. Investigating of four main carbapenem-resistance mechanisms in high-level carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. J Chin Med Assoc. 2018;81(2):127-132.
-
23.
Wołkowicz T., Patzer J. A., Kaminska W., Gierczynski R., Dzierzanowska D. Distribution of carbapenem resistance mechanisms in Pseudomonas aeruginosa isolates among hospitalised children in Poland: Characterisation of two novel insertion sequences disrupting the oprD gene. J Glob Antimicrob Resist. 2016;7:119-125.
-
24.
Ishii Y., Ichikawa M., Yamaguchi K., Takano K., Inoue M. Localization of cephalosporinase in Enterobacter cloacae by immunocytochemical examination. J Antibiot. 1991;44(10):1088-1095.
-
25.
Francisco J.A., Earhart C.F., Georgiou G. Transport and anchoring of betalactamase to the external surface of Escherichia coli. Proc Natl Acad Sci. 1992;89(7):2713-2717.
-
26.
Foster T.J. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev. 1983;47(3):361-409.
-
27.
Ambler R.P. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289:321-331.
-
28.
Jacoby G.A., Matthew M. The distribution of beta-lactamase genes on plasmids found in Pseudomonas. Plasmid. 1979;2(1):41-47.
-
29.
Mugnier P., Dubrous P., Casin I., Arlet G., Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996;40(11):2488-2493.
-
30.
al Naiemi N., Duim B., Bart A. A CTX-M extended-spectrum beta-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Med Microbiol. 2006;55(11):1607-1608.
-
31.
Dubois V., Arpin C., Noury P., Quentin C. Clinical Strain of Pseudomonas aeruginosa Carrying a blaTEM-21 Gene Located on a Chromosomal Interrupted TnA Type Transposon. Antimicrob Agents Chemother. 2002;46(11):3624-3626.
-
32.
Marchandin H., Jean-Pierre H., De Champs C., et al. Production of a TEM24 plasmid-mediated extended-spectrum beta-lactamase by a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44(1):213-216.
-
33.
Poirel L., Ronco E., Naas T., Nordmann P. Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa. Clin Microbiol Infect. 1999;5(10):651652.
-
34.
Chanawong A., M'Zali F.H., Heritage J., Lulitanond A., Hawkey P.M. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother. 2001;48(6):839-852.
-
35.
Naas T., Philippon L., Poirel L., Ronco E., Nordmann P. An SHV-Derived Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(5):1281-1284.
-
36.
Naiemi N.A., Duim B., Savelkoul P.H.M., et al. Widespread Transfer of Resistance Genes between Bacterial Species in an Intensive Care Unit: Implications for Hospital Epidemiology. J Clin Microbiol. 2005;43(9):48624864.
-
37.
Celenza G., Pellegrini C., Caccamo M., et al. Spread of bla(CTX-M-type) and bla(PER-2) beta-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother. 2006;57(5):975-978.
-
38.
Picao R.C., Poirel L., Gales A.C., Nordmann P. Further identification of CTX-M-2 extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(5):2225-2226.
-
39.
Nordmann P., Ronco E., Naas T., et al. Characterization of a novel extendedspectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993;37(5):962-969.
-
40.
Naas T., Poirel L., Karim A., Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1999;176(2):411-419.
-
41.
Girlich D., Naas T., Leelaporn A., et al. Nosocomial spread of the integronlocated veb-1-like cassette encoding an extended-pectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis. 2002;34(5):603611.
-
42.
Poirel L., Rotimi V.O., Mokaddas E.M., Karim A., Nordmann P. VEB-1-like extended-spectrum beta-lactamases in Pseudomonas aeruginosa, Kuwait. Emerg Infect Dis. 2001;7(3):468-470.
-
43.
Dubois V., Poirel L., Marie C., et al. Molecular Characterization of a Novel Class 1 Integron Containing blaGES-1 and a Fused Product of aac(3)-Ib/ aac(6“)-Ib” Gene Cassettes in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2002;46(3):638-645.
-
44.
Kotsakis S.D., Papagiannitsis C.C., Tzelepi E., et al. GES-13, a β-Lactamase Variant Possessing Lys-104 and Asn-170 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(3):1331-1333.
-
45.
Poirel L., Brinas L., Fortineau N., Nordmann P. Integron-Encoded GESType Extended-Spectrum β-Lactamase with Increased Activity toward Aztreonam in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(8):3593-3597.
-
46.
Poirel L., Brinas L., Verlinde A., Ide L., Nordmann P. BEL-1, a novel clavulanic acid-inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(9):3743-3748.
-
47.
Poirel L., Docquier J.-D., De Luca F., et al. BEL-2, an Extended-Spectrum β-Lactamase with Increased Activity toward Expanded-Spectrum Cephalosporins in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(1):533-535.
-
48.
Paisley J.W., Washington J.A. Combined Activity of Clavulanic Acid and Ticarcillin Against Ticarcillin-Resistant, Gram-Negative Bacilli. Antimicrob Agents Chemother. 1978;14(2):224-227.
-
49.
Thomson K.S., Weber D.A., Sanders C.C., Sanders W.E. Beta-lactamase production in members of the family Enterobacteriaceae and resistance to beta-lactam-enzyme inhibitor combinations. Antimicrob Agents Chemother. 1990;34(4):622-627.
-
50.
Sanders C.C., Iaconis J.P., Bodey G.P., Samonis G. Resistance to ticarcillin-potassium clavulanate among clinical isolates of the family Enterobacteriaceae: role of PSE-1 beta-lactamase and high levels of TEM1 and SHV-1 and problems with false susceptibility in disk diffusion tests. Antimicrob Agents Chemother. 1988;32(9):1365-1369.
-
51.
Poirel L., Naas T., Nordmann P. Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrob Agents Chemother. 2010;54(1):24-38.
-
52.
Hall L.M., Livermore D.M., Gur D., Akova M., Akalin H.E. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993;37(8):1637-1644.
-
53.
Juan C., Mulet X., Zamorano L., et al. Detection of the Novel ExtendedSpectrum β-Lactamase OXA-161 from a Plasmid-Located Integron in Pseudomonas aeruginosa Clinical Isolates from Spain. Antimicrob Agents Chemother. 2009;53(12):5288-5290.
-
54.
Girlich D., Naas T., Nordmann P. Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(6):2043-2048.
-
55.
Sevillano E., Gallego L., Garcia-Lobo J.M. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol Biol (Paris). 2009;57(6):493-495.
-
56.
Labuschagne C.J., Weldhagen G.F., Ehlers M.M., Dove M.G. Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum betalactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. Int J Antimicrob Agents. 2008;31(6):527-530.
-
57.
Poirel L., Weldhagen G. F., De Champs C., Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extendedspectrum beta-lactamase GES-2 in South Africa. J Antimicrob Chemother. 2002;49(3):561-565.
-
58.
Villegas M.V., Lolans K., Correa A., and the Colombian Nosocomial Resistance Study Group. First Identification of Pseudomonas aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing β-Lactamase. Antimicrob Agents Chemother. 2007;51(4):1553-1555.
-
59.
Wolter D.J., Kurpiel P.M., Woodford N., et al. Phenotypic and Enzymatic Comparative Analysis of the Novel KPC Variant KPC-5 and Its Evolutionary Variants, KPC-2 and KPC-4. Antimicrob Agents Chemother. 2009;53(2):557-562.
-
60.
Hong D.J., Bae I.K., Jang I.H., et al. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother. 2015;47(2):81-97.
-
61.
Walsh T.R., Toleman M.A., Poirel L., Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306-325.
-
62.
Jovcic B., Lepsanovic Z., Suljagic V., et al. Emergence of NDM-1 metalloβ-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother. 2011;55(8):3929-3931.
-
63.
Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs. 2008;17(2):131-143.
-
64.
Lister P.D., Wolter D.J., Hanson N.D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.
-
65.
Quale J., Bratu S., Gupta J., Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633-1641.
-
66.
Lopez-Causape C., Sommer L.M., Cabot G., et al. Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Sci Rep. 2017;7(1):5555.
-
67.
Chevalier S., Bouffartigues E., Bodilis J., et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017;41(5):698-722.
-
68.
Wolter D.J., Lister P.D. Mechanisms of β-lactam resistance among Pseudomonas aeruginosa. Curr Pharm Des. 2013;19(2):209-222.
-
69.
Xavier D.E., Picao R.C., Girardello R., Fehlberg L.C., Gales A.C. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 2010;10:217.
-
70.
Lazareva A.V., Kryzhanovskaya O.A., Bocharova Ju.A., Chebotar' I.V., Mayanskiy N.A. The prevalence of metallo-beta-lactamases and efflux-mediated mechanisms in carbapenem nonsusceptible nosocomial Pseudomonas aeruginosa isolated in Moscow in 2012-2015. Vestnik Rossijskoj akademii medicinskih nauk. 2015;6:679-683. Russian. (Лазарева А.В., Крыжановская О.А., Бочарова Ю.А., Чеботарь И.В., Маянский Н.А. Распространенность металло-бета-лактамаз и эффлюкс-механизмов у карбапенемрезистентных госпитальных штаммов Pseudomonas aeruginosa, выделенных в г. Москве в 2012-2015 годах. Вестник Российской академии медицинских наук. 2015;6:679-683.).
-
71.
Chalhoub H., Saenz Y., Rodriguez-Villalobos H., et al. High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob Agents. 2016;48(6):740-743.
-
72.
Jacoby G.A. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;41(2):120-126.
-
73.
Poole K. Pseudomonas aeruginosa: resistance to the Max. Front Microbiol. 2011;2:65.
-
74.
Poole K. Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria. Antimicrob Agents Chemother. 2000;44(9):2233-2241.
-
75.
Li Y., Mima T., Komori Y., Morita Y., et al. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob. Chemother. 2003;52:572-575.
-
76.
Sekiya H., Mima T., Morita Y., et al. Functional cloning and characterization of a multidrug efflux pump, mexHI-opmD, from a Pseudomonas aeruginosa mutant. Antimicrob. Agents Chemother. 2003;47:2990-2992.
-
77.
Tomas M., Doumith M., Warner M., et al. Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Antimicrob Agents Chemother. 2010;54(5):22192224.
-
78.
Henrichfreise B., Wiegand I., Pfister W., Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother. 2007;51(11):4062-4070.
-
79.
Hocquet D., Muller A., Blanc K., et al. Relationship between antibiotic use and incidence of MexXY-OprM overproducers among clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52:11731175.
-
80.
Maseda H., Saito K., Nakajima A., Nakae T. Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2000;192(1):107-112.
-
81.
Jalal S., Ciofu O., Hoiby N., Gotoh N., Wretlind B. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis. Antimicrob Agents Chemother. 2000;44:710-712.
-
82.
Ochs M.M., McCusker M.P., Bains M., Hancock R.E. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother. 1999;43:1085-1090.
-
83.
Cayci Y.T., Coban A.Y., Gunaydin M. Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa clinical isolates. Indian J Med Microbiol. 2014;32(3):285-289.
-
84.
Doi Y., Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45:88-94.
-
85.
Yamane K., Doi Y., Yokoyama K., et al. Genetic environments of the rmtA gene in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2004;48:2069-2074.
-
86.
Jin J.S., Kwon K.T., Moon D.C., Lee J.C. Emergence of 16S rRNA methylase rmtA in colistin-only-sensitive Pseudomonas aeruginosa in South Korea. Int J Antimicrob Agents. 2009;33:490-491.
-
87.
Zhou Y., Yu H., Guo Q., et al. Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis. 2010;29:1349-1353.
-
88.
Gurung M., Moon D.C., Tamang M.D., et al. Emergence of 16S rRNA methylase gene armA and cocarriage of blaIMP-1 in Pseudomonas aeruginosa isolates from South Korea. Diagn Microbiol Infect Dis. 2010;68:468-470.
-
89.
Ramirez M.S., Tolmasky M.E. Aminoglycoside modifying enzymes. Drug Resist. 2010;13:151-171.
-
90.
Biddlecome S., Haas M., Davies J., et al. Enzymatic modification of aminoglycoside antibiotics: a new 3-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother. 1976;9:951-955.
-
91.
Haas M., Biddlecome S., Davies J., Luce C.E., Daniels P.J. Enzymatic modification of aminoglycoside antibiotics: a new 6′-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother. 1976;9:945-950.
-
92.
Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:479-487.
-
93.
Galimand M., Lambert T., Gerbaud G., Courvalin P. Characterization of the aac(6′)-Ib gene encoding an aminoglycoside 6′-N-acetyltransferase in Pseudomonas aeruginosa BM2656. Antimicrob Agents Chemother. 1993;37:1456-1462.
-
94.
MacLeod D.L., Nelson L.E., Shawar R.M., et al. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis. 2000;181:1180-1884.
-
95.
Guillard T., Duval V., Moret H., et al. Rapid Detection of aac(6′)-Ibcr Quinolone Resistance Gene by Pyrosequencing. J Clin Microbiol. 2010;48(1):286-289.
-
96.
Kettner M., Milosovic P., Hletkova M., Kallova J. Incidence and mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa serotype O11 isolates. Infection. 1995;23:380-383.
-
97.
Kim J.Y., Park Y.J., Kwon H.J., et al. Occurrence and mechanisms of amikacin resistance and its association with β-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. J Antimicrob Chemother. 2008;62:479-483.
-
98.
Riccio M.L., Pallecchi L., Fontana R., Rossolini G.M. In70 of plasmid pAX22, a blaVIM-1-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother. 2001;45:1249-1253.
-
99.
Muller C., Plesiat P., Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-Lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;55:1211-1221.
-
100.
Trimble M.J., Mlynarcik P., Kolar M., Hancock R.E. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6(10).
-
101.
Lu S., Walters G., Parg R., Dutcher J.R. Nanomechanical response of bacterial cells to cationic antimicrobial peptides. Soft Matter. 2014;10:1806-1815.
-
102.
Zhang L., Dhillon P., Yan H., Farmer S., Hancock R.E.W. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44:3317-3321.
-
103.
McPhee J.B., Lewenza S., Hancock R.E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol. 2003;50:205-217.
-
104.
Yan A., Guan Z., Raetz C.R. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J Biol Chem. 2007;282:36077-36089.
-
105.
Fernandez L., Gooderham W. J., Bains M., et al. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParRParS. Antimicrob Agents Chemother. 2010;54:3372-3382.
-
106.
Olaitan A.O., Morand S., Rolain J.M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.
-
107.
Moskowitz S.M., Brannon M.K., Dasgupta N., et al. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56(2):1019-1030.
-
108.
Barrow K., Kwon D.H. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:5150-5154.
-
109.
Gutu A. D., Sgambati N., Strasbourger P., et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204-2215.
-
110.
Daugelavicius R., Bakiene E., Bamford D.H. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother. 2000;44:2969-2978.
-
111.
McCoy L.S., Roberts K.D., Nation R.L., et al. Polymyxins and analogues bind to ribosomal RNA and interfere with eukaryotic translation in vitro. Chembiochem. 2013;14:2083-2086.
-
112.
Mogi T., Murase Y., Mori M., et al. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: Quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem. 2009;146:491-499.
-
113.
Fernandez L., Alvarez-Ortega C., Wiegand I., et al. Characterization of the Polymyxin B Resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(1):110-119.
-
114.
Alvarez-Ortega C., Wiegand I., Olivares J., Hancock R.E.W, Martinez J.L. Genetic determinants involved in the susceptibility of Pseudomonas aeruginosa to beta-lactam antibiotics. Antimicrob Agents Chemother. 2010;54:4159-4167.
-
115.
Breidenstein E.B.M., Khaira B.K., Wiegand I., Overhage J., Hancock R.E.W. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother. 2008;52:4486-4491.
-
116.
Dotsch A., Becker T., Pommerenke C., et al. Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:2522-2531.
-
117.
Schurek K.N., Marr A.K., Taylor P.K., et al. Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52:4213-4219.
-
118.
Chebotar I.V., Mayansky A.N., Konchakova E.D., Lazareva A.V., Chistyakova V.P. Antimicrobial Resistance of Bacteria in Biofilms. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2012;14(1):51-58. Russian. (Чеботарь И.В., Маянский А.Н., Кончакова Е.Д., Лазарева А.В., Чистякова В.П. Антибиотикорезистентность биопленочных бактерий. Клиническая микробиология и антимикробная химиотерапия. 2012;14(1):5158.).
-
119.
Nichols W.W., Dorrington S.M., Slack M.P., Walmsley H.L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988;32(4):518-523.
-
120.
Suci P.A., Mittelman M.W., Yu F.P., Geesey G.G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994;38(9):2125-2133.
-
121.
Macia M.D., Blanquer D., Togores B., et al. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382-3386.
-
122.
Llanes C., Pourcel C., Richardot C., GERPA Study Group. Diversity of β-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study. J Antimicrob Chemother. 2013;68(8):1763-1771.
-
123.
Yu Y.S., Qu T.T., Zhou J.Y., et al. Integrons Containing the VIM-2 Metallo-β-Lactamase Gene among Imipenem-Resistant Pseudomonas aeruginosa Strains from Different Chinese Hospitals. J Clin Microbiol. 2006;44(11):4242-4245.
-
124.
Pfeifer Y., Cullik A., Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010;300(6):371-379.
-
125.
Wei W.J., Yang H.F., Ye Y., Li J.B. New Delhi metallo-β-lactamase-mediated carbapenem resistance: origin, diagnosis, treatment and public health concern. Chin Med J. 2015;128(14):1969-1976.
-
126.
Sanbongi Y., Shimizu A., Suzuki T., et al. Classification of OprD sequence and correlation with antimicrobial activity of carbapenem agents in Pseudomonas aeruginosa clinical isolates collected in Japan. Microbiol Immunol. 2009;53(7):361-367.
-
127.
Adewoye L., Sutherland A., Srikumar R., Poole K. The MexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol. 2002;184(15):4308-4312.
-
128.
Ooka T., Ogura Y., Asadulghani M., et al. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res. 2009;19(10):1809-1816.
-
129.
Siguier P., Gourbeyre E., Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38(5):865-891.
-
130.
Boutoille D., Corvec S., Caroff N., et al. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing betalactam resistance. FEMS Microbiol Lett. 2004;230(1):143-146.
-
131.
Diene S.M., L'homme T., Bellulo S., et al. ISPa46, a novel insertion sequence in the oprD porin gene of an imipenem-resistant Pseudomonas aeruginosa isolate from a cystic fibrosis patient in Marseille, France. Int J Antimicrob Agents. 2013;42(3):268-271.
-
132.
Sun Q., Ba Z., Wu G., et al. Insertion sequence ISRP10 inactivation of the oprD gene in imipenem-resistant Pseudomonas aeruginosa clinical isolates. Int J Antimicrob Agents. 2016;47(5):375-379.
-
133.
Maseda H., Sawada I., Saito K., et al. Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(4):1320-1328.
-
134.
Kumar A., Schweizer H.P. Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa in presence of metabolic stress. PLoS One. 2011;6:e26520.
-
135.
Breidenstein E.B., de la Fuente-Nunez C., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419426.
-
136.
Cohen Stuart J., Leverstein-Van Hall M.A. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2010;36(3):205-210.
-
137.
Song W., Kim H., Kim J., et al. Carbapenem inactivation method: accurate detection and easy interpretation of carbapenemase production in Enterobacteriaceae and Pseudomonas spp. Ann Clin Microbiol. 2016;19(4):83-87.
-
138.
Woodford N., Eastaway A.T., Ford M., et al. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J Clin Microbiol. 2010;48(8):2999-3002.
-
139.
Clinical recommendations. Determination of the susceptibility of microorganisms to antimicrobials, 2015. Available at: www.antibiotic.ru/minzdrav/files/docs/clrec-dsma2015. Russian. (Клинические рекомендации. Определение чувствительности микроорганизмов к антимикробным препаратам, 2015. Доступно по адресу: www.antibiotic.ru/minzdrav/files/docs/clrec-dsma2015.).
-
140.
Baranov A.A., Mayansky A.N., Chebotar I.V., Mayansky N.A. A new era in medical microbiology. Vestnik Rossijskoj akademii medicinskih nauk. 2015;85(11):1011-1018. Russian. (Баранов А.А., Маянский А.Н., Чеботарь И.В., Маянский Н.А. Новая эпоха в медицинской микробиологии. Вестник Российской академии медицинских наук. 2015;85(11):10111018.).
-
141.
Tihomirov D.S., Katrysh S.A., Savochkina Ju.A., et al. Multiplex PCR as a new method for determining carbapenem resistance genes. Gematologija i transfuziologija. 2014;59(1):123. Russian. (Тихомиров Д.С., Катрыш С.А., Савочкина Ю.А. и соавт. Мультиплексная ПЦР как новый метод определения генов устойчивости к карбапенемам. Гематология и трансфузиология. 2014;59(1):123.).
-
142.
Pobolelova Yu.I., Ulyashova M.M., Rubtsova M.Yu., Egorov A.M. Multiplex PCR for joint amplification of carbapenemase genes of molecular classes A, B, and D. Biohimija. 2014;79(6):718-723. Russian. (Поболелова Ю.И., Уляшова М.М., Рубцова М.Ю., Егоров А.М. Мультиплексная ПЦР для совместной амплификации генов бактериальных ферментов карбапенемаз молекулярных классов A, B и D. Биохимия. 2014;79(6):718-723.).
-
143.
Shirani K., Ataei B., Roshandel F. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency. Adv Biomed Res. 2016;5:124.
-
144.
Bogaerts P., Cuzon G., Evrard S., et al. Evaluation of a DNA microarray for rapid detection of the most prevalent extended-spectrum β-lactamases, plasmid-mediated cephalosporinases and carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter. Int J Antimicrob Agents. 2106;48(2):189-193.
-
145.
Hrabak J., Chudackova E., Walkova R. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26(1):103-114.
-
146.
Imperi F., Ciccosanti F., Perdomo A.B., et al. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics. 2009;9(7):1901-1915.
-
147.
Liu Y.Y., Chandler C.E., Leung L.M., et al. Structural Modification of Lipopolysaccharide Conferred by mcr-1 in Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother. 2017;61(6):e00580-17.
-
148.
Hrabak J., Walkova R., Studentova V., Chudackova E., Bergerova T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(9):3222-3227.
-
149.
Mirande C., Canard I., Buffet Croix Blanche S., et al. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2015;34(11):2225-2234.
-
150.
Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. Available at: www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.