Аннотация
Определена чувствительность к антибиотикам для 208 госпитальных изолятов K. pneumoniae, выделенных в четырёх регионах Беларуси. Показано широкое распространение устойчивости к карбапенемам. Гены карбапенемаз blaNDM, blaOXA-48 или blaKPC обнаружены у 55 штаммов из 12 многопрофильных больниц 4 городов. Выявлена пониженная скорость экспоненциального роста и низкая конкурентоспособность продуцентов карбапенемаз по сравнению с антибиотикочувствительными штаммами K. pneumoniae.
Гомельский государственный медицинский университет, Гомель, Беларусь
Гомельский государственный медицинский университет, Гомель, Беларусь
Институт радиобиологии Национальной академии наук Беларуси, Гомель, Беларусь
-
1.
Nordmann P., Naas T., Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791-1798.
-
2.
Tapal’skij D.V., Osipov V.A., Zhavoronok S.V. Carbapenemases of gramnegative bacteria: distribution and methods of detection. Medicinskij zhurnal. 2012;2:10-15. Russian. (Тапальский Д.В., Осипов В.А., Жаворонок С.В. Карбапенемазы грамотрицательных бактерий: распространение и методы детекции. Медицинский журнал. 2012;2:10-15.).
-
3.
Pitout J.D.D., Nordmann P., Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59:5873-5884.
-
4.
Gupta N., Limbago B.M., Patel J.B., Kallen A.J. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:60-67.
-
5.
Chen L., Mathema B., Chavda K.D., et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22:686-696.
-
6.
Neidell M.J., Cohen B., Furuya Y., et al. Costs of healthcare- and communityassociated infections with antimicrobial-resistant versus antimicrobialsusceptible organisms. Clin Infect Dis. 2012;55:807-815.
-
7.
Hamprecht A., Gottig S. Treatment of infections caused by carbapenemresistant Enterobacteriaceae. Curr Treat Options Infect Dis. 2014;6:425-438.
-
8.
Dautzenberg M.J., Wekesa A.N., Gniadkowski M., et al. The association between colonization with carbapenemase-producing enterobacteriaceae and overall ICU mortality: an observational cohort study. Crit Care Med. 2015;43:1170-1177.
-
9.
Woodford N., Turton J.F., Livermore D.M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35:736-755.
-
10.
Potron A., Poirel L., Rondinaud E., Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 20
-
11.
Euro Surveill. 2013;18(31). 11. Bialek-Davenet S., Criscuolo A., Ailloud F., et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis. 2014;20:1812-1820.
-
12.
Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;15:107-118.
-
13.
Andersson D.I., Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260-271.
-
14.
Vogwill T., MacLean R.C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl. 2015;8:284-295.
-
15.
Hennequin C., Robin F. Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis. 2016;35:333-341.
-
16.
Pages J.-M., James C.E., Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6:893-903.
-
17.
Adler M., Anjum M., Andersson D.I., Sandegren L. Influence of acquired b-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J Antimicrob Chemother. 2013;68:51-59.
-
18.
Lee C.R., Lee J.H., Park K.S., et al. Global dissemination of carbapenemaseproducing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.
-
19.
Gottig S., Riedel-Christ S., Saleh A., et al. Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents. 2016;47:430-435.
-
20.
Di Luca M.C., Sorum V., Starikova I., et al. Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. J Antimicrob Chemother. 2017;72:85-89.
-
21.
Cordeiro N.F., Chabalgoity J.A., Yim L., Vignoli R. Synthesis of metallo-βlactamase VIM-2 is associated with a fitness reduction in Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother. 2014;58:6528-6535.
-
22.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. Available at: http://www.eucast.org.
-
23.
Jung P.P., Christian N., Kay D., et al. Protocols and programs for high-throughput growth and aging phenotyping in yeast. PLoS ONE. 2015;10(3):e0119807.
-
24.
Lenski R.E., Simpson S.C., Nguyen T.T. Genetic analysis of a plasmidencoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol. 1994;176:3140-3147.
-
25.
Centers for Disease Control and Prevention. Guidance for control of carbapenem-resistant Enterobacteriaceae (CRE). 2012. Available at: http://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf (accessed 06 March 2017).
-
26.
Tacconelli E., Cataldo M.A., Dancer S.J., et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20(Suppl. 1):1-55.