Abstract
Klebsiella pneumoniae is one of the most common pathogens causing community-acquired and nosocomial infections in hospitalized patients. Among the two known pathotypes, hypervirulent (hvKp) has become a matter of serious concern, as such isolates can cause unusual infections in terms of their location and course (multiple foci and/or subsequent metastatic spread) in previously healthy individuals. Currently, infections caused by hvKp are detected everywhere. Of even greater concern is the convergence of hypervirulence and multiple antibiotic resistance in K. pneumoniae. This review outlines epidemiological data on the prevalence of hvKp, describes the hypervirulent pathotype in comparison with the classical one in terms of virulence factor expression and clinical manifestations. The modern approaches to the diagnosis of infections caused by hvKp, current and promising treatment, and the possibilities for specific prevention are also discussed.
War Veterans Hospital No. 3, Moscow, Russia
I.M. Sechenov First Moscow State Medical University, Moscow, Russia
City Clinical Hospital named after S.S. Yudin, Moscow, Russia
I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Paediatric Research and Clinical Centre for Infectious Diseases, Saint-Petersburg, Russia
Paediatric Research and Clinical Centre for Infectious Diseases, Saint-Petersburg, Russia
Paediatric Research and Clinical Centre for Infectious Diseases, Saint-Petersburg, Russia
-
1.
Rachina S., Zakharenkov I., Dekhnich N., Kozlov R., Sinopalnikov A., Ivanchik N., et al. Aetiology of severe community-acquired pneumonia and antimicrobial susceptibility of Steptococcus pneumoniae in adults in Russia. J Antimicrob Chemother. 2021;76(5):1368-1370.
DOI: 10.1093/jac/dkab014
-
2.
Kozlov R.S., Palagin I.S., Ivanchik N.V., Trushin I.V., Dekhnich A.V., Edelstein M.V., et al. National monitoring of antibiotic resistance of pathogens causing communityacquired urinary tract infections in Russia: results of the multicenter epidemiological study «DARMIS-2023». Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2024;26(3):328-337. Russian.
DOI: 10.36488/cmac.2024.3.328-337
-
3.
Paczosa M.K., Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629-661.
DOI: 10.1128/MMBR.00078-15
-
4.
Ashayeri-Panah M., Feizabadi M.M., Eftekhar F. Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum β-lactamase producing Klebsiella pneumoniae. Jundishapur J Microbiol. 2014;7(2):e8747.
DOI: 10.5812/jjm.8747
-
5.
Sukhorukova M.V., Edelstein M.V., Ivanchik N.V., Skleenova E.Yu., Shajdullina E.R., Azyzov I.S., et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study «MARATHON 2015-2016». Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2019;21(2):147-159. Russian.
DOI: 10.36488/cmac.2019.2.147-159
-
6.
van 't Veen A., van der Zee A., Nelson J., Speelberg B., Kluytmans J.A.J.W., Buiting A.G.M. Outbreak of infection with a multiresistant Klebsiella pneumoniae strain associated with contaminated roll boards in operating rooms. J Clin Microbiol. 2005;43(10):4961-4967.
DOI: 10.1128/JCM.43.10.4961-4967.2005
-
7.
Bourigault C., Andreo A., Mangeant R., Le Gallou F., Marquot G., Demeure Dit Latte D., et al. Hospital outbreak of NDM-producing Klebsiella pneumoniae in a surgical intensive care unit: sink traps as the causing source of epidemic strain resurgence. Am J Infect Control. 2025;53(5):648-651.
DOI: 10.1016/j.ajic.2025.01.003
-
8.
Zeng L., Yang C., Zhang J., Hu K., Zou J., Li J., et al. An outbreak of carbapenem-resistant Klebsiella pneumoniae in an intensive care unit of a major teaching hospital in Chongqing, China. Front Cell Infect Microbiol. 2021;11:656070.
DOI: 10.3389/fcimb.2021.656070
-
9.
IHME Pathogen Core Group. Global burden associated with 85 pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Infect Dis. 2024;24(8):868-895.
DOI: 10.1016/S1473-3099(24)00158-0
-
10.
European Antimicrobial Resistance Collaborators. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health. 2022;7(11):e897-e913.
DOI: 10.1016/S2468-2667(22)00225-0
-
11.
World Health Organization. WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Available at: https://iris.who.int/server/api/core/bitstreams/1a41ef7e-dd24-4ce6-a9a6-1573562e7f37/content. Accessed May 2024.
-
12.
Liu P., Li X., Luo M., Xu X., Su K., Chen S., et al. Risk Factors for carbapenem-resistant Klebsiella pneumoniae infection: a meta-analysis. Microb Drug Resist. 2018;24(2):190-198.
DOI: 10.1089/mdr.2017.0061
-
13.
Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2020; 22(1):4-19. Russian.
DOI: 10.36488/cmac.2020.1.4-19
-
14.
Edelshtein M.V., Shaidullina E.R., Ivanchik N.V., Dekhnich A.V., Mikotina A.V., Skleenova E.Y., et al. Antibiotic resistance of clinical isolates of Klebsiella pneumoniae and Escherichia coli in Russian hospitals: results of a multicenter epidemiological study. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2024;26(1):67-78. Russian.
DOI: 10.36488/cmac.2024.1.67-78
-
15.
Liu Y., Wang Z., Jian Z., Liu P., Li Y., Qin F., et al. Nosocomial transmission, adaption and clinical outcomes of carbapenem-resistant hypervirulent Klebsiella pneumoniae. BMC Microbiol. 2025;25(1):376.
DOI: 10.1186/s12866-025-04096-z
-
16.
Zaynalabidova Kh.G., Ageevets V.A., Larin E.S., Fedina L.V., Sychev I.N., Burmistrova E.N., et al. Infections caused by Klebsiella pneumoniae with clinical signs of hypervirulence. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2025;27(Suppl. 1):28. Russian.
-
17.
Lin Y.T., Liu C.J., Chen T.J., Fung C.P. Long-term mortality of patients with septic ocular or central nervous system complications from pyogenic liver abscess: a populationbased study. PLoS One. 2012;7(3):e33978.
DOI: 10.1371/journal.pone.0033978
-
18.
Li J., Ren J., Wang W., Wang G., Gu G., Wu X., et al. Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. Eur J Clin Microbiol Infect Dis. 2018;37(4):679-689.
DOI: 10.1007/s10096-017-3160-z
-
19.
Russo T.A., Marr C.M. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):e00001-19.
DOI: 10.1128/CMR.00001-19
-
20.
Podschun R., Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603.
DOI: 10.1128/CMR.11.4.589
-
21.
Shon A.S., Bajwa R.P.S., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;4(2):107-118.
DOI: 10.4161/viru.22718
-
22.
Chang W.N., Huang C.R., Lu C.H., Chien C.C. Adult Klebsiella pneumoniae meningitis in Taiwan: an overview. Acta Neurol Taiwan. 2012;21(2):87-96. PMID: 22879119.
-
23.
Lin Y.T., Jeng Y.Y., Chen T.L., Fung C.P. Bacteremic community-acquired pneumonia due to Klebsiella pneumoniae: clinical and microbiological characteristics in Taiwan, 2001-2008. BMC Infect Dis. 2010;10:307.
DOI: 10.1186/1471-2334-10-307
-
24.
Chung D.R., Lee S.S., Lee H.R., Kim H.B., Choi H.J., Eom J.S., et al. Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infect. 2007;54(6):578-583.
DOI: 10.1016/j.jinf.2006.11.008
-
25.
Fazili T., Sharngoe C., Endy T., Kiska D., Javaid W., Polhemus M. Klebsiella pneumoniae liver abscess: an emerging disease. Am J Med Sci. 2016;351(3):297-304.
DOI: 10.1016/j.amjms.2015.12.018
-
26.
Rossi B., Gasperini M.L., Leflon-Guibout V., Gioanni A., de Lastours V., Rossi G., et al. Hypervirulent Klebsiella pneumoniae in cryptogenic liver abscesses, Paris, France. Emerg Infect Dis. 2018;24(2):221-229.
DOI: 10.3201/eid2402.170957
-
27.
European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment. Emergence of hypervirulent Klebsiella pneumoniae ST23 carrying carbapenemase genes in EU/EEA countries, first update. Available at: www.ecdc.europa.eu/sites/default/files/documents/RRA-20240129-48%20FINAL.pdf. Accessed February 2024.
-
28.
Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013;62(9):165-170. PMID: 23466435.
-
29.
Ageevets V.A., Ageevets I.V., Sidorenko S.V. Convergence of multiple resistance and hypervirulence in Klebsiella pneumoniae. Infektsiya i immunitet. 2022;12(3):450-460. Russian.
DOI: 10.15789/2220-7619-COM-1825
-
30.
Belotserkovskiy B.Z., Kruglov A.N., Ni O.G., Matyash M.I., Kostin D.M., Shifman E.M., et al. Etiological structure of infections in patients of the surgical intensive care unit in the post-covid era. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2024;26(2):124-140. Russian.
DOI: 10.36488/cmac.2024.2.124-140
-
31.
Gonzalez-Ferrer S., Peñaloza H.F., Budnick J.A., Bain W.G., Nordstrom H.R., Lee J.S., et al. Finding order in the chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. Infect Immun. 2021;89(4):e00693-20.
DOI: 10.1128/IAI.00693-20
-
32.
Wong W.M., Wong B.C.Y., Hui C.K., Ng M., Lai K.C., Tso W.K., et al. Pyogenic liver abscess: retrospective analysis of 80 cases over a 10-year period. J Gastroenterol Hepatol. 2002;17(9):1001-1007.
DOI: 10.1046/j.1440-1746.2002.02787.x
-
33.
Siu L.K., Yeh K.M., Lin J.C., Fung C.P., Chang F.Y. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis. 2012;12(11):881-887.
DOI: 10.1016/S1473-3099(12)70205-0
-
34.
Liu Y.C., Cheng D.L., Lin C.L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med. 1986;146(10):1913-1916. PMID: 3532983.
-
35.
Lan P., Jiang Y., Zhou J., Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist. 2021;25:26-34.
DOI: 10.1016/j.jgar.2021.02.020
-
36.
Lev A.I., Astashkin E.I., Kislichkina A.A., Solovieva E.V., Kombarova T.I., Korobova O.V., et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012-2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health. 2018;112(3):142-151.
DOI: 10.1080/20477724.2018.1460949
-
37.
Hala S., Malaikah M., Huang J., Bahitham W., Fallatah O., Zakri S., et al. The emergence of highly resistant and hypervirulent Klebsiella pneumoniae CC14 clone in a tertiary hospital over 8 years. Genome Med. 2024;16(1):58.
DOI: 10.1186/s13073-024-01332-5
-
38.
Liu C., Guo J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann Clin Microbiol Antimicrob. 2019;18(1):4.
DOI: 10.1186/s12941-018-0302-9
-
39.
World Health Organization. Antimicrobial Resistance, Hypervirulent Klebsiella pneumoniae – Global situation. Available at: www.who.int/emergencies/disease-outbreaknews/item/2024-DON527. Accessed July 2024.
-
40.
Komisarova E.V., Volozhantsev N.V. Hypervirulent Klebsiella pneumoniae: a new infectious threat. Infektsionnye bolezni. 2019;17(3):81-89. Russian.
DOI: 10.20953/1729-9225-2019-3-81-89
-
41.
Cheng D.L., Liu Y.C., Yen M.Y., Liu C.Y., Wang R.S. Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med. 1991;151(8):1557-1559. PMID: 1872659.
-
42.
Wang J.H., Liu Y.C., Lee S.S.J., Yen M.Y., Chen Y.S., Wang J.H., et al. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 1998;26(6):1434-1438.
DOI: 10.1086/516369
-
43.
Lee W.S., Choi S.T., Kim K.K. Splenic abscess: a single institution study and review of the literature. Yonsei Med J. 2011;52(2):288-292.
DOI: 10.3349/ymj.2011.52.2.288
-
44.
Tung C.C., Chen F.C., Lo C.J. Splenic abscess: an easily overlooked disease? Am Surg. 2006;72(4):322-325. PMID: 16676856.
-
45.
Lee C.H., Hu T.H., Liu J.W. Splenic abscess caused by Klebsiella pneumoniae and non-Klebsiella pneumoniae in Taiwan: emphasizing risk factors for acquisition of Klebsiella pneumoniae splenic abscess. Scand J Infect Dis. 2005;37(11-12):905-909.
DOI: 10.1080/00365540500333624
-
46.
Lee H.C., Chuang Y.C., Yu W.L., Lee N.Y., Chang C.M., Ko N.Y., et al. Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with communityacquired bacteraemia. J Intern Med. 2006;259(6):606-614.
DOI: 10.1111/j.1365-2796.2006.01641.x
-
47.
Sharma M., Chow D.R., Muller M.P. Endogenous Klebsiella endophthalmitis in a Vietnamese immigrant. CMAJ. 2009;181(8):495-497.
DOI: 10.1503/cmaj.090060
-
48.
Dehghani A.R., Masjedi A., Fazel F., Ghanbari H., Akhlaghi M., Karbasi N. Endogenous Klebsiella endophthalmitis associated with liver abscess: first case report from Iran. Case Rep Ophthalmol. 2011;2(1):10-14.
DOI: 10.1159/000323449
-
49.
Tang L.M., Chen S.T., Hsu W.C., Chen C.M. Klebsiella meningitis in Taiwan: an overview. Epidemiol Infect. 1997;119(2):135-142.
DOI: 10.1017/s0950268897007930
-
50.
Fang C.T., Chang S.C., Hsueh P.R., Chen Y.C., Sau W.Y., Luh K.T. Microbiologic features of adult communityacquired bacterial meningitis in Taiwan. J Formos Med Assoc. 2000;99(4):300-304. PMID: 10870313.
-
51.
Hsu C.L., Chang C.H., Wong K.N., Chen K.Y., Yu C.J., Yang P.C. Management of severe community-acquired septic meningitis in adults: from emergency department to intensive care unit. J Formos Med Assoc. 2009;108(2):112-118.
DOI: 10.1016/S0929-6646(09)60041-3
-
52.
Cheng N.C., Yu Y.C., Tai H.C., Hsueh P.R., Chang S.C., Lai S.Y., et al. Recent trend of necrotizing fasciitis in Taiwan: Focus on monomicrobial Klebsiella pneumoniae necrotizing fasciitis. Clin Infect Dis. 2012;55(7):930-939.
DOI: 10.1093/cid/cis565
-
53.
Prokesch B.C., TeKippe M., Kim J., Raj P., TeKippe E.M., Greenberg D.E. Primary osteomyelitis caused by hypervirulent Klebsiella pneumoniae. Lancet Infect Dis. 2016;16(9):e190-e195.
DOI: 10.1016/S1473-3099(16)30021-4
-
54.
Kishibe S., Okubo Y., Morino S., Hirotaki S., Tame T., Aoki K., et al. Pediatric hypervirulent Klebsiella pneumoniae septic arthritis. Pediatr Int. 2016;58(5):382-385.
DOI: 10.1111/ped.12806
-
55.
Zhang S., Zhang X., Wu Q., Zheng X., Dong G., Fang R., et al. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniaeinduced pyogenic liver abscess in southeastern China. Antimicrob Resist Infect Control. 2019;8:166.
DOI: 10.1186/s13756-019-0615-2
-
56.
McCabe R., Lambert L., Frazee B. Invasive Klebsiella pneumoniae infections, California, USA. Emerg Infect Dis. 2010;16(9):1490-1491.
DOI: 10.3201/eid1609.100386
-
57.
Jung J., Park K.H., Park S.Y., Song E.H., Lee E.J., Choi S.H., et al. Comparison of the clinical characteristics and outcomes of Klebsiella pneumoniae and Streptococcus pneumoniae meningitis. Diagn Microbiol Infect Dis. 2015;82(1):87-91.
DOI: 10.1016/j.diagmicrobio.2015.02.006
-
58.
Fang C.T., Lai S.Y., Yi W.C., Hsueh P.R., Liu K.L., Chang S.C. Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis. 2007;45(3):284-293.
DOI: 10.1086/519262
-
59.
Rafat C., Messika J., Barnaud G., Dufour N., Magdoud F., Billard-Pomarès T., et al. Hypervirulent Klebsiella pneumoniae, a 5-year study in a French ICU. J Med Microbiol. 2018;67(8):1083-1089.
DOI: 10.1099/jmm.0.000788
-
60.
Gu D., Dong N., Zheng Z., Lin D., Huang M., Wang L., et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37-46.
DOI: 10.1016/S1473-3099(17)30489-9
-
61.
Harada S., Aoki K., Yamamoto S., Ishii Y., Sekiya N., Kurai H., et al. Clinical and molecular characteristics of Klebsiella pneumoniae isolates causing bloodstream infections in Japan: occurrence of hypervirulent infections in health care. J Clin Microbiol. 2019;57(11):e01206-19.
DOI: 10.1128/JCM.01206-19
-
62.
Choby J.E., Howard-Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae – clinical and molecular perspectives. J Intern Med. 2020;287(3):283-300.
DOI: 10.1111/joim.13007
-
63.
Hetta H.F., Alanazi F.E., Ali M.A.S., Alatawi A.D., Aljohani H.M., Ahmed R., et al. Hypervirulent Klebsiella pneumoniae: insights into virulence, antibiotic resistance, and fight strategies against a superbug. Pharmaceuticals. 2025;18(5):724.
DOI: 10.3390/ph18050724
-
64.
Wang Q., Yu H., Pan X., Huang W., Lalsiamthara J., Ullah S., et al. Exploring current hypervirulent Klebsiella pneumoniae infections: insights into pathogenesis, drug resistance, and vaccine prospects. Front Microbiol. 2025;16:1604763.
DOI: 10.3389/fmicb.2025.1604763
-
65.
Cheng H.Y., Chen Y.S., Wu C.Y., Chang H.Y., Lai Y.C., Peng H.L. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol. 2010;192(12):3144-3158.
DOI: 10.1128/JB.00031-10
-
66.
Pan Y.J., Fang H.C., Yang H.C., Lin T.L., Hsieh P.F., Tsai F.C., et al. Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol. 2008;46(7):2231-2240.
DOI: 10.1128/JCM.01716-07
-
67.
Lee I.R., Molton J.S., Wyres K.L., Gorrie C., Wong J., Hoh C.H., et al. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Sci Rep. 2016;6: 29316.
DOI: 10.1038/srep29316
-
68.
Wang L., Shen D., Wu H., Ma Y. Resistance of hypervirulent Klebsiella pneumoniae to both intracellular and extracellular killing of neutrophils. PLoS One. 2017;12(3): e0173638.
DOI: 10.1371/journal.pone.0173638
-
69.
Yeh K.M., Kurup A., Siu L.K., Koh Y.L., Fung C.P., Lin J.C., et al. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J Clin Microbiol. 2007;45(2):466-471.
DOI: 10.1128/JCM.01150-06
-
70.
Shankar-Sinha S., Valencia G.A., Janes B.K., Rosenberg J.K., Whitfield C., Bender R.A., et al. The Klebsiella pneumoniae O antigen contributes to bacteremia and lethality during murine pneumonia. Infect Immun. 2004;72(3):1423-1430.
DOI: 10.1128/IAI.72.3.1423-1430.2004
-
71.
Follador R., Heinz E., Wyres K.L., Ellington M.J., Kowarik M., Holt K.E., et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom. 2016;2(8):e000073.
DOI: 10.1099/mgen.0.000073
-
72.
Hsieh P.F., Liu J.Y., Pan Y.J., Wu M.C., Lin T.L., Huang Y.T., et al. Klebsiella pneumoniae peptidoglycan-associated lipoprotein and murein lipoprotein contribute to serum resistance, antiphagocytosis, and proinflammatory cytokine stimulation. J Infect Dis. 2013;208(10):1580-1589.
DOI: 10.1093/infdis/jit384
-
73.
Izquierdo L., Coderch N., Piqué N., Bedini E., Corsaro M.M., Merino S., et al. The Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide and virulence. J Bacteriol. 2003;185(24):7213-7221.
DOI: 10.1128/JB.185.24.7213-7221.2003
-
74.
Regué M., Hita B., Piqué N., Izquierdo L., Merino S., Fresno S., et al. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun. 2004;72(1):54-61.
DOI: 10.1128/IAI.72.1.54-61.2004
-
75.
Schroll C., Barken K.B., Krogfelt K.A., Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010;10:179.
DOI: 10.1186/1471-2180-10-179
-
76.
Wu C.C., Huang Y.J., Fung C.P., Peng H.L. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology. 2010;156(7):1983-1992.
DOI: 10.1099/mic.0.038158-0
-
77.
Holden V.I., Bachman M.A. Diverging roles of bacterial siderophores during infection. Metallomics. 2015;7(6):986-995.
DOI: 10.1039/c4mt00333k
-
78.
Miethke M., Marahiel M.A. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71(3):413-451.
DOI: 10.1128/MMBR.00012-07
-
79.
Flo T.H., Smith K.D., Sato S., Rodriguez D.J., Holmes M.A., Strong R.K., et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917-921.
DOI: 10.1038/nature03104
-
80.
Bachman M.A., Lenio S., Schmidt L., Oyler J.E., Weiser J.N. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio. 2012;3(6):e00224-11.
DOI: 10.1128/mBio.00224-11
-
81.
Zhu J., Wang T., Chen L., Du H. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol. 2021;12:642484.
DOI: 10.3389/fmicb.2021.642484
-
82.
Karampatakis T., Tsergouli K., Behzadi P. Carbapenemresistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel). 2023;12(2):234.
DOI: 10.3390/antibiotics12020234
-
83.
Bachman M.A., Miller V.L., Weiser J.N. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog. 2009;5(10):e1000622.
DOI: 10.1371/journal.ppat.1000622
-
84.
Abbas R., Chakkour M., Zein El Dine H., Obaseki E.F., Obeid S.T., Jezzini A., et al. General overview of Klebsiella pneumoniae: epidemiology and the role of siderophores in its pathogenicity. Biology (Basel). 2024;13(2):78.
DOI: 10.3390/biology13020078
-
85.
Walker K.A., Miller V.L. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in Klebsiella pneumoniae. Curr Opin Microbiol. 2020;54:95-102.
DOI: 10.1016/j.mib.2020.01.006
-
86.
Wang G., Zhao G., Chao X., Xie L., Wang H. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health. 2020;17(17):6278.
DOI: 10.3390/ijerph17176278
-
87.
Bailey D.C., Alexander E., Rice M.R., Drake E.J., Mydy L.S., Aldrich C.C., et al. Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae. J Biol Chem. 2018;293(20):7841-7852.
DOI: 10.1074/jbc.RA118.002798
-
88.
Russo T.A., Gulick A.M. Aerobactin synthesis proteins as antivirulence targets in hypervirulent Klebsiella pneumoniae. ACS Infect Dis. 2019;5(7):1052-1054.
DOI: 10.1021/acsinfecdis.9b00117
-
89.
Tang H.L., Chiang M.K., Liou W.J., Chen Y.T., Peng H.L., Chiou C.S., et al. Correlation between Klebsiella pneumoniae carrying pLVPK-derived loci and abscess formation. Eur J Clin Microbiol Infect Dis. 2010;29(6): 689-698.
DOI: 10.1007/s10096-010-0915-1
-
90.
Dai P., Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal. 2022;36(12):e24743.
DOI: 10.1002/jcla.24743
-
91.
Bulger J., MacDonald U., Olson R., Beanan J., Russo T.A. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKP1 after pulmonary but not subcutaneous challenge. Infect Immun. 2017;85(10):e00093-17.
DOI: 10.1128/IAI.00093-17
-
92.
Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018; 56(9):e00776-18.
DOI: 10.1128/JCM.00776-18
-
93.
Catalán-Nájera J.C., Garza-Ramos U., Barrios-Camacho H. Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence. 2017;8(7):1111-1123.
DOI: 10.1080/21505594.2017.1317412
-
94.
Yu W.L., Ko W.C., Cheng K.C., Lee C.C., Lai C.C., Chuang Y.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis. 2008;62(1):1-6.
DOI: 10.1016/j.diagmicrobio.2008.04.007
-
95.
Russo T.A., Olson R., MacDonald U., Beanan J., Davidson B.A. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015;83(8):3325-3333.
DOI: 10.1128/IAI.00430-15
-
96.
Russo T.A., Olson R., Macdonald U., Metzger D., Maltese L.M., Drake E.J., et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun. 2014;82(6): 2356-2367.
DOI: 10.1128/IAI.01667-13
-
97.
Wu H., Li D., Zhou H., Sun Y., Guo L., Shen D. Bacteremia and other body site infection caused by hypervirulent and classic Klebsiella pneumoniae. Microb Pathog. 2017;104: 254-262.
DOI: 10.1016/j.micpath.2017.01.049
-
98.
Russo T.A., Carlino-MacDonald U., Drayer Z.J., Davies C.J., Alvarado C.L., Hutson A., et al. Deciphering the relative importance of genetic elements in hypervirulent Klebsiella pneumoniae to guide countermeasure development. EBioMedicine. 2024;107:105302.
DOI: 10.1016/j.ebiom.2024.105302
-
99.
Al Ismail D., Campos-Madueno E.I., Donà V., Endimiani A. Hypervirulent Klebsiella pneumoniae (hvKp): overview, epidemiology, and laboratory detection. Pathog Immun. 2025;10(1):80-119.
DOI: 10.20411/pai.v10i1.777
-
100.
Mai D., Wu A., Li R., Cai D., Tong H., Wang N., et al. Identification of hypervirulent Klebsiella pneumoniae based on biomarkers and Galleria mellonella infection model. BMC Microbiol. 2023;23(1):369.
DOI: 10.1186/s12866-023-03124-0
-
101.
Shi Q., Lan P., Huang D., Hua X., Jiang Y., Zhou J., et al. Diversity of virulence level phenotype of hypervirulent Klebsiella pneumoniae from different sequence type lineage. BMC Microbiol. 2018;18(1):94.
DOI: 10.1186/s12866-018-1236-2
-
102.
Liu J., Xu Z., Li H., Chen F., Han K., Hu X., et al. Metagenomic approaches reveal strain profiling and genotyping of Klebsiella pneumoniae from hospitalized patients in China. Microbiol Spectr. 2022;10(2):e0219021.
DOI: 10.1128/spectrum.02190-21
-
103.
Xu Z., Li B., Jiang Y., Huang J., Su L., Wu W., et al. Development of a quadruple qRT-PCR assay for simultaneous identification of hypervirulent and carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr. 2024;12(1):e0071923.
DOI: 10.1128/spectrum.00719-23
-
104.
Duan Z., Wang S., Xie N., Zhao J., Dong J., Li J. Development and evaluation of a duplex real-time multienzyme isothermal rapid amplification assay for the detection of hypervirulent Klebsiella pneumoniae in clinical spiked blood specimens. Heliyon. 2024;10(17):e37050.
DOI: 10.1016/j.heliyon.2024.e37050
-
105.
Yan C., Zhou Y., Du S., Du B., Zhao H., Feng Y., et al. Recombinase-aided amplification assay for rapid detection of hypervirulent Klebsiella pneumoniae (hvKp) and characterization of the hvKp pathotype. Microbiol Spectr. 2023;11(2):e0398422.
DOI: 10.1128/spectrum.03984-22
-
106.
Huang Y., Li J., Gu D., Fang Y., Chan E.W., Chen S., et al. Rapid detection of K1 hypervirulent Klebsiella pneumoniae by MALDI-TOF MS. Front Microbiol. 2015;6:1435.
DOI: 10.3389/fmicb.2015.01435
-
107.
Siu L.K., Tsai Y.K., Lin J.C., Chen T.L., Fung C.P., Chang F.Y. Development of a colloidal gold-based immunochromatographic strip for rapid detection of Klebsiella pneumoniae serotypes K1 and K2. J Clin Microbiol. 2016;54(12):3018-3021.
DOI: 10.1128/JCM.01608-16
-
108.
Wang C.H., Lu P.L., Liu E.Y.M., Chen Y.Y., Lin F.M., Lin Y.T., et al. Rapid identification of capsular serotype K1/K2 Klebsiella pneumoniae in pus samples from liver abscess patients and positive blood culture samples from bacteremia cases via an immunochromatographic strip assay. Gut Pathog. 2019;11:11.
DOI: 10.1186/s13099-019-0285-x
-
109.
Fernández-Manteca M.G., Ocampo-Sosa A.A., Vecilla D.F., Ruiz M.S., Roiz M.P., Madrazo F., et al. Identification of hypermucoviscous Klebsiella pneumoniae K1, K2, K54 and K57 capsular serotypes by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2024;319:124533.
DOI: 10.1016/j.saa.2024.124533
-
110.
Zhang L.Y., Tang J.W., Tian B.S., Huang Y., Liu X.Y., Zhao Y., et al. Identification of hypermucoviscous Klebsiella pneumoniae strains via untargeted surface-enhanced Raman spectroscopy. Anal Methods. 2024;16(42): 7105-7113.
DOI: 10.1039/d4ay01137f
-
111.
Fung C.P., Chang F.Y., Lee S.C., Hu B.S., Kuo B.I.T., Liu C.Y., et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut. 2002;50(3):420-424.
DOI: 10.1136/gut.50.3.420
-
112.
Lin Y.T., Wang F.D., Wu P.F., Fung C.P. Klebsiella pneumoniae liver abscess in diabetic patients: association of glycemic control with the clinical characteristics. BMC Infect Dis. 2013;13:56.
DOI: 10.1186/1471-2334-13-56
-
113.
Higdon M.L., Higdon J.A. Treatment of oncologic emergencies. Am Fam Physician. 2006;74(11):1873-1880. PMID: 17168344.
-
114.
Lee S.S.J., Chen Y.S., Tsai H.C., Wann S.R., Lin H.H., Huang C.K., et al. Predictors of septic metastatic infection and mortality among patients with Klebsiella pneumoniae liver abscess. Clin Infect Dis. 2008;47(5):642-650.
DOI: 10.1086/590932
-
115.
Harada S., Doi Y. Hypervirulent Klebsiella pneumoniae: a call for consensus definition and international collaboration. J Clin Microbiol. 2018;56(9):e00959-18.
DOI: 10.1128/JCM.00959-18
-
116.
Chou F.F., Kou H.K. Endogenous endophthalmitis associated with pyogenic hepatic abscess. J Am Coll Surg. 1996;182(1):33-36. PMID: 8542086.
-
117.
Tamma P.D., Heil E.L., Justo J.A., Mathers A.J., Satlin M.J., Bonomo R.A. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant Gramnegative infections. Clin Infect Dis. 2024;ciae403.
DOI: 10.1093/cid/ciae403
-
118.
Paul M., Carrara E., Retamar P., Tängdén T., Bitterman R., Bonomo R.A., et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrugresistant Gram-negative bacilli (endorsed by European Society of Intensive Care Medicine). Clin Microbiol Infect. 2022;28(4):521-547.
DOI: 10.1016/j.cmi.2021.11.025
-
119.
Wang Z., Cai R., Wang G., Guo Z., Liu X., Guan Y., et al. Combination therapy of phage vB_KpnM_P-KP2 and gentamicin combats acute pneumonia caused by K47 serotype Klebsiella pneumoniae. Front Microbiol. 2021;12:674068.
DOI: 10.3389/fmicb.2021.674068
-
120.
Zurabov F., Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J. 2021;18(1):9.
DOI: 10.1186/s12985-020-01485-w
-
121.
Hetta H.F., Ramadan Y.N., Al-Harbi A.I., Ahmed E.А., Battah B., Abd Ellah N.H., et al. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines. 2023;11(2):413.
DOI: 10.3390/biomedicines11020413
-
122.
Abo-Shama U.H., El-Gendy H., Mousa W.S., Hamouda R.A., Yousuf W.E., Hetta H.F., et al. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect Drug Resist. 2020;13:351-362.
DOI: 10.2147/IDR.S234425
-
123.
Wu K., Lin X., Lu Y., Dong R., Jiang H., Svensson S.L., et al. RNA interactome of hypervirulent Klebsiella pneumoniae reveals a small RNA inhibitor of capsular mucoviscosity and virulence. Nat Commun. 2024;15(1):6946.
DOI: 10.1038/s41467-024-51213-z
-
124.
Song S., Yang S., Zheng R., Yin D., Cao Y., Wang Y., et al. Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci USA. 2024;121(35): e2400446121.
DOI: 10.1073/pnas.2400446121
-
125.
Wang R., Zhang A., Sun S., Yin G., Wu X., Ding Q., et al. Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenemresistant Klebsiella pneumoniae ST11-KL64. Nat Commun. 2024;15(1):67.
DOI: 10.1038/s41467-023-44351-3
-
126.
Diago-Navarro E., Calatayud-Baselga I., Sun D., Khairallah C., Mann I., Ulacia-Hernando A., et al. Antibodybased immunotherapy to treat and prevent infection with hypervirulent Klebsiella pneumoniae. Clin Vaccine Immunol. 2017;24(1):e00456-16.
DOI: 10.1128/CVI.00456-16
-
127.
Miller J.C., Cross A.S., Tennant S.M., Baliban S.M. Klebsiella pneumoniae lipopolysaccharide as a vaccine target and the role of antibodies in protection from disease. Vaccines (Basel). 2024;12(10):1177.
DOI: 10.3390/vaccines12101177
-
128.
Safety and Immunogenicity of a Klebsiella pneumoniae tetravalent bioconjugate vaccine (Kleb4V). Available at: https://clinicaltrials.gov/study/NCT04959344. Accessed October 2022.
-
129.
An open-label, dose-finding, phase i study to evaluate the safety and immunogenicity of a bivalent Klebsiella pneumoniae vaccine (CHO-V08) in healthy adults. Available at: www.clinicaltrials.gov/study/NCT07016152. Accessed June 2025.