Abstract
The problem of antimicrobial resistance represents one of the most urgent and complex problems of modern healthcare. The measures that are being taken today to control antimicrobial resistance, however, cannot be considered satisfactory, and we are seeing an increasing prevalence of antibiotic-resistant microorganisms worldwide. One of the reasons for this may be the uncontrolled use of antimicrobials in the areas not connected with the healthcare, in particular in agriculture. In the last few decades, there has been an active discussion on the unjustified use of antimicrobials in animal husbandry and veterinary medicine, but the potential pool of antibiotic-resistant strains in soils, including agricultural land, has been virtually ignored, though it is the main source of food for humans and, therefore, a potential pathway for the transmission of antibiotic resistance factors. The article discusses the main possible pathways of formation of resistant strains in soils and their clinical relevance within the framework of the concept of ‘One Health’.
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
Samara National Research University named after S.P. Korolev, Samara, Russia
National Movement for Resource-Saving Agriculture in Russia, Samara, Russia
-
1.
Salam M.A., Al-Amin M.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., et al. Antimicrobial resistance: a growing serious threat for global public health. Healthcare (Basel). 2023;11(13):1946.
DOI: 10.3390/healthcare11131946
-
2.
FAO. 2021. The FAO Action Plan on Antimicrobial Resistance 2021-2025.
DOI: 10.4060/cb5545en
-
3.
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199-1226.
DOI: 10.1016/S0140-6736(24)01867-1
-
4.
Sharma S., Chauhan A., Ranjan A., Mathkor D.M., Haque S., Ramniwas S., et al. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol. 2024;15:1403168.
DOI: 10.3389/fmicb.2024.1403168
-
5.
Okeke I.N., de Kraker M.E.A., Van Boeckel T.P., Kumar C.K., Schmitt H., Gales A.C., et al. The scope of the antimicrobial resistance challenge. Lancet. 2024;403(10442):2426-2438.
DOI: 10.1016/S0140-6736(24)00876-6
-
6.
Abbas A., Barkhouse A., Hackenberger D., Wright G.D. Antibiotic resistance: a key microbial survival mechanism that threatens public health. Cell Host Microbe. 2024; 32(6):837-851.
DOI: 10.1016/j.chom.2024.05.015
-
7.
Daudova A.D., Demina Yu.Z., Ginatullina G.N., Abdrakhmanova R.O., Baeva G.R., Yasenyavskaya A.L., et al. Antibiotic resistance. The challenge of modernity. Antibiotics and chemotherapy. 2023;68(3-4):66-75. Russian.
DOI: 10.37489/0235-2990-2023-68-3-4-66-75
-
8.
Sulayyim H.J.A., Ismail R., Hamid A.A., Ghafar N.A. Antibiotic resistance during COVID-19: a systematic review. Int J Environ Res Public Health. 2022;19(19):11931.
DOI: 10.3390/ijerph191911931
-
9.
Maistrenko M.A., Yakusheva E.N., Titov D.S. Analysis of the problem of antibiotic resistance. Antibiotics and chemotherapy. 2023;68(5-6):39-48. Russian.
DOI: 10.37489/0235-2990-2023-68-5-6-39-48
-
10.
Clinical recommendations «Prevention of infections in the surgical area». Year of approval: 2018. Developer: Nonprofit partnership «National Association of Specialists in the Control of infections related to the provision of medical care» (NP «NASKI»). Available at: https://antimicrob.net/wp-content/uploads/Profilaktika-IOKHV_Klinicheskierekomendacii_2018.pdf. Accessed March 31, 2025. Russian.
-
11.
AMRhub. A virtual entry point for an ecosystem of unique web products dedicated to antimicrobial resistance issues. Available at: https://amrhub.ru/. Accessed March 31, 2025 г. Russian.
-
12.
Strategy for preventing the spread of antimicrobial Resistance in the Russian Federation for the period up to 2030 dated September 25, 2017 No. 2045-r. Available at: www.garant.ru/products/ipo/prime/doc/71677266/. Accessed May 4, 2025. Russian.
-
13.
Zhu Y.G., Zhao Y., Zhu D., Gillings M., Penuelas J., Ok Y.S., et al. Soil biota, antimicrobial resistance and planetary health. Environ Int. 2019;131:105059.
DOI: 10.1016/j.envint.2019.105059
-
14.
Keck N., Treilles M., Gordoncillo M., Ivette O.L.I., Dauphin G., Dorado-Garcia A., et al. A systematic approach toward progressive improvement of national antimicrobial resistance surveillance systems in food and agriculture sectors. Front Vet Sci. 2023;9:1057040.
DOI: 10.3389/fvets.2022.1057040
-
15.
Singh B., Bhat A., Ravi K. Antibiotics misuse and antimicrobial resistance development in agriculture: a global challenge. Environ Health (Wash). 2024;2(9):618-622.
DOI: 10.1021/envhealth.4c00094
-
16.
Thanner S., Drissner D., Walsh F. Antimicrobial resistance in agriculture. mBio. 2016;7(2):e02227-15.
DOI: 10.1128/mBio.02227-15
-
17.
Abat C., Fournier P.E., Jimeno M.T., Rolain J.M., Raoult D. Extremely and pandrug-resistant bacteria extradeaths: myth or reality? Eur J Clin Microbiol Infect Dis. 2018;37(9):1687-1697.
DOI: 10.1007/s10096-018-3300-0
-
18.
Sharma J., Sharma D., Singh A., Sunita K. Colistin resistance and management of drug resistant infections. Can J Infect Dis Med Microbiol. 2022;2022:4315030.
DOI: 10.1155/2022/4315030
-
19.
Samtiya M., Matthews K.R., Dhewa T., Puniya A.K. Antimicrobial resistance in the food chain: trends, mechanisms, pathways, and possible regulation strategies. Foods. 2022;11(19):2966.
DOI: 10.3390/foods11192966
-
20.
Caniça M., Manageiro V., Abriouel H., Moran-Gilad J., Franz C.M.A.P. Antibiotic resistance in foodborne bacteria. Trends in Food Science & Technology. 2019;84:41-44.
DOI: 10.1016/ j.tifs.2018.08.001
-
21.
Mutua F., Sharma G., Grace D., Bandyopadhyay S., Shome B., Lindahl J. A review of animal health and drug use practices in India, and their possible link to antimicrobial resistance. Antimicrob Resist Infect Control. 2020;9(1):103.
DOI: 10.1186/s13756-020-00760-3
-
22.
Schrijver R., Stijntjes M., Rodríguez-Baño J., Tacconelli E., Babu Rajendran N., Voss A. Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clin Microbiol Infect. 2018;24(6):577-590.
DOI: 10.1016/j.cmi.2017.09.013
-
23.
Federal Law No. 492-FZ dated December 30, 2020 «On Biological Safety in the Russian Federation», containing the main provisions on the main biological risks to the population and ways to control and prevent them. Available at: www.garant.ru/products/ipo/prime/doc/400056868. Accessed March 31, 2025. Russian.
-
24.
Order of the Ministry of Agriculture of the Russian Federation dated November 2, 2022 No. 776 «On Approval of the Procedure for Prescribing Medicinal Products for Veterinary Use, the List of Medicinal Products for Veterinary Use, including Antimicrobial Drugs for Veterinary Use, Available on Prescription for a Medicinal Product or at the Request of a Veterinary Organization or an Organization (Individual Entrepreneur) Engaged in the breeding, rearing and Maintenance of Animals, the Form of prescription a form for a medicinal product for veterinary use, the forms of the requirement of a veterinary organization or an organization (individual entrepreneur)…» Available at: www.garant.ru/products/ipo/prime/doc/405745219/. Accessed March 31, 2025. Russian.
-
25.
Xiao R., Huang D., Du L., Song B., Yin L., Chen Y., et al. Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors, and potential exposure risks. Sci Total Environ. 2023;869:161855.
DOI: 10.1016/j.scitotenv.2023.161855
-
26.
Li S., Ondon B.S., Ho S.H., Li F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): new challenges for soil remediation and conservation. Environ Res. 2023;219:115132.
DOI: 10.1016/j.envres.2022.115132
-
27.
Han B., Ma L., Yu Q., Yang J., Su W., Hilal M.G., et al. The source, fate and prospect of antibiotic resistance genes in soil: a review. Front Microbiol. 2022;13:976657.
DOI: 10.3389/fmicb.2022.976657
-
28.
Lee J.H., Park K.S., Jeon J.H., Lee S.H. Antibiotic resistance in soil. Lancet Infect Dis. 2018;18(12):1306-1307.
DOI: 10.1016/S1473-3099(18)30675-3
-
29.
Pino-Hurtado M.S., Fernández-Fernández R., Torres C., Robredo B. Searching for Antimicrobial-producing bacteria from soils through an educational project and their evaluation as potential biocontrol agents. Antibiotics (Basel). 2023;13(1):29.
DOI: 10.3390/antibiotics13010029
-
30.
Xu Y., Li H., Tan L., Li Q., Liu W., Zhang C., et al. What role does organic fertilizer actually play in the fate of antibiotic resistome and pathogenic bacteria in planting soil? J Environ Manage. 2022;317:115382.
DOI: 10.1016/j.jenvman.2022.115382
-
31.
Liao H., Li X., Yang Q., Bai Y., Cui P., Wen C., et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evol. 2021;38(6):2337-2350.
DOI: 10.1093/molbev/msab029
-
32.
Li X., Zhu L., Zhang S.Y., Li J., Lin D., Wang M. Characterization of microbial contamination in agricultural soil: a public health perspective. Sci Total Environ. 2024;912:169139.
DOI: 10.1016/j.scitotenv.2023.169139
-
33.
Kaviani Rad A., Astaykina A., Streletskii R., Afsharyzad Y., Etesami H., Zarei M., et al. An overview of antibiotic resistance and abiotic stresses affecting antimicrobial resistance in agricultural soils. Int J Environ Res Public Health. 2022;19(8):4666.
DOI: 10.3390/ijerph19084666
-
34.
Cerqueira F., Matamoros V., Bayona J.M., Berendonk T.U., Elsinga G., Hornstra L.M., et al. Antibiotic resistance gene distribution in agricultural fields and crops. A soilto-food analysis. Environ Res. 2019;177:108608.
DOI: 10.1016/j.envres.2019.108608
-
35.
Sun Y., Qiu T., Gao M., Shi M., Zhang H., Wang X. Inorganic and organic fertilizers application enhanced antibiotic resistome in greenhouse soils growing vegetables. Ecotoxicol Environ Saf. 2019;179:24-30.
DOI: 10.1016/j.ecoenv.2019.04.039
-
36.
Wang F., Chen S., Wang Y., Zhang Y., Hu C., Liu B. Long-term nitrogen fertilization elevates the activity and abundance of nitrifying and denitrifying microbial communities in an upland soil: implications for nitrogen loss from intensive agricultural systems. Front Microbiol. 2018;9:2424.
DOI: 10.3389/fmicb.2018.02424
-
37.
Kang Y., Hao Y., Shen M., Zhao Q., Li Q., Hu J. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotoxicol Environ Saf. 2016;130:279-288.
DOI: 10.1016/j.ecoenv.2016.04.028
-
38.
Stanley D., Batacan R.Jr., Bajagai Y.S. Rapid growth of antimicrobial resistance: the role of agriculture in the problem and the solutions. Appl Microbiol Biotechnol. 2022;106(21):6953-6962.
DOI: 10.1007/s00253-022-12193-6
-
39.
Krzemiński P., Markiewicz M., Popowska P. Entry routes of antibiotics and antimicrobial resistance in the environment. In: Hashmi MZ (ed) Antibiotics and antimicrobial resistance genes. Springer; 2020. pp. 415-434.
-
40.
Nicholson F., Chambers B., Lord E., Bessey R., Misselbrook T. Estimates of manure volumes by livestock type and land use for England and Wales. NERC Environmental Information Data Centre. In: Hydrology UCfE (ed); 2016.
-
41.
Nõlvak H., Truu M., Kanger K., Tampere M., Espenberg M., Loit E., et al. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci Total Environ. 2016;562:678-689.
DOI: 10.1016/j.scitotenv.2016.04.035
-
42.
Roberts M.C. Antibiotics and resistance in the environment. Antimicrobial resistance in the 21st century. Fong I.W., Shlaes D., Drlica K. (eds). 2018. pp. 383-408.
-
43.
Liao H., Li X., Yang Q., Bai Y., Cui P., Wen C., et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evol. 2021;38(6):2337-2350.
DOI: 10.1093/molbev/msab029
-
44.
Kurenbach B., Hill A.M., Godsoe W., van Hamelsveld S., Heinemann J.A. Agrichemicals and antibiotics in combination increase antibiotic resistance evolution. PeerJ. 2018;6:e5801.
DOI: 10.7717/peerj.5801
-
45.
Xu X., Zarecki R., Medina S., Ofaim S., Liu X., Chen C., et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J. 2019;13(2):494-508.
DOI: 10.1038/s41396-018-0288-5
-
46.
Staub J.M., Brand L., Tran M., Kong Y., Rogers S.G. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter. J Ind Microbiol Biotechnol. 2012;39(4):641-647.
DOI: 10.1007/s10295-011-1057-x
-
47.
Comont D., Lowe C., Hull R. Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat Commun. 2020;11:3086.
DOI: 10.1038/s41467-020-16896-0
-
48.
Arsène M.M.J., Davares A.K.L., Podoprigora I.V., Smolyakova L.A., Sarra S., Khelifi I., et al. The public health issue of antibiotic residues in food and feed: causes, consequences, and potential solutions. Vet World. 2022;15(3):662-671.
DOI: 10.14202/vetworld.2022.662-671
-
49.
Brunn A., Kadri-Alabi Z., Moodley A., Guardabassi L., Taylor P., Mateus A., et al. Characteristics and global occurrence of human pathogens harboring antimicrobial resistance in food crops: a scoping review. Front Sustain Food Syst. 2022;6:824714.
DOI: 10.3389/fsufs.2022.824714
-
50.
Xu C., Kong L., Gao H., Cheng X., Wang X. A review of current bacterial resistance to antibiotics in food animals. Front Microbiol. 2022;13:822689.
DOI: 10.3389/fmicb.2022.822689
-
51.
Plaza-Rodriguez C., Mesa-Varona O., Alt K., Grobbel M., Tenhagen B.A., Kaesbohrer A. Comparative analysis of consumer exposure to resistant bacteria through chicken meat consumption in Germany. Microorganisms. 2021;9(5):1045.
DOI: 10.3390/microorganisms9051045
-
52.
Tasho R.P., Cho J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci Total Environ. 2016;563-564:366-376.
DOI: 10.1016/j.scitotenv.2016.04.140
-
53.
Wang X., Ryu D., Houtkooper R.H., Auwerx J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays. 2015;37(10):1045-1053.
DOI: 10.1002/bies.20150 0071
-
54.
Bhattacharjee M.K. Development of resistance to antibiotics. In: Bhattacharjee MK (ed) Chemistry of antibiotics and related drugs. Springer; 2016. pp. 27-48.
-
55.
Wu H., Rui X., Li W., Xiao Y., Zhou J., Dong M. Wholegrain oats (Avena sativa L.) as a carrier of lactic acid bacteria and a supplement rich in angiotensin I-converting enzyme inhibitory peptides through solid-state fermentation. Food Funct. 2018;9(4):2270-2281.
DOI: 10.1039/C7FO01578J
-
56.
Ahlawat O.P., Yadav D., Kashyap P.L., Khippal A., Singh G. Wheat endophytes and their potential role in managing abiotic stress under changing climate. J Appl Microbiol. 2022;132(4):2501-2520.
DOI: 10.1111/ jam. 15375
-
57.
Makar O., Kuzniar A., Patsula O., Kavulych Y., Kozlovskyy V., Wolinska A., et al. Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology (Basel). 2021;10(5):409.
DOI: 10.3390/biology10050409
-
58.
Montassier E., Valdes-Mas R., Batard E., Zmora N., DoriBachash M., Suez J., et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol. 2021;6(8):1043-1054.
DOI: 10.1038/s41564-021-00920-0
-
59.
Ruiz Mostacero N., Castelli M.V., Barolo M.I., Amigot S.L., Fulgueira C.L., Lopez S.N. Fungal endophytes in Peperomia obtusifolia and their potential as inhibitors of chickpea fungal pathogens. World J Microbiol Biotechnol. 2021;37(1):14.
DOI: 10.1007/s11274-020-02954-8
-
60.
Jones-Dias D., Manageiro V., Caniça M. Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Environ Microbiol. 2016;18(1):260-272.
DOI: 10.1111/1462-2920.13021
-
61.
Salgueiro V., Manageiro V., Bandarra N.M., Ferreira E., Clemente L., Caniça M. Genetic relatedness and diversity of Staphylococcus aureus from different reservoirs: humans and animals of livestock, poultry, zoo, and aquaculture. Microorganisms. 2020;8(9):1345.
DOI: 10.3390/microorganisms8091345
-
62.
Ghaly T.M., Chow L., Asher A.J., Waldron L.S., Gillings M.R. Evolution of class 1 integrons: mobilization and dispersal via food-borne 243 bacteria. PLoS One. 2017;12:e0179169.
DOI: 10.1371/journal.pone.0179169
-
63.
Berg G., Erlacher A., Smalla K., Krause R. Vegetable microbiomes: is there a connection among opportunistic infections, human health and our 'gut feeling'? Microb Biotechnol. 2014;7:487-495.
DOI: 10.1111/1751-7915.12159
-
64.
Fernández-Trapote E., Oliveira M., Cobo-Díaz J.F., AlvarezOrdóñez A. The resistome of the food chain: A One Health perspective. Microb Biotechnol. 2024;17(7):e14530.
DOI: 10.1111/1751-7915.14530
-
65.
Pitt S.J., Gunn A. The One Health concept. Br J Biomed Sci. 2024;81:12366.
DOI: 10.3389/bjbs.2024.12366
-
66.
Mackenzie J.S., Jeggo M. The One Health approach – why is it so important? Trop Med Infect Dis. 2019;4(2):88.
DOI: 10.3390/tropicalmed4020088
-
67.
van Bruggen A.H.C., Goss E.M., Havelaar A., van Diepeningen A.D., Finckh M.R., Morris J.G. Jr. One Health – cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci Total Environ. 2019;664:927-937.
DOI: 10.1016/j.scitotenv.2019.02.091
-
68.
Trinh P., Zaneveld J.R., Safranek S., Rabinowitz P.M. One Health relationships between human, animal, and environmental microbiomes: a mini-review. Front Public Health. 2018;6:235.
DOI: 10.3389/fpubh.2018.00235
-
69.
Hansson K., Brenthel A. Imagining a post-antibiotic era: a cultural analysis of crisis and antibiotic resistance. Med Humanit. 2022;48(3):381-388.
DOI: 10.1136/medhum-2022-012409