Abstract
Despite ongoing efforts by various countries to combat antimicrobial resistance (AMR), the problem remains a global-scale threat, particularly in the context of nosocomial infections, where resistant pathogens are associated with high mortality. Global (GLASS) and national (AMRmap) AMR monitoring systems provide valuable population-level data; however, for clinical decision-making at the individual patient level, highquality local epidemiological data enabling optimization of empirical antimicrobial therapy is critically important. In practice, the collection and use of local data in the Russian Federation are limited, particularly by the lack of methodological standards and low availability of digital tools. This review conducts a comparative analysis of key international and Russian guidelines for organizing AMR monitoring to assess their applicability for addressing local monitoring tasks in healthcare facilities and to identify similarities and contradictions in their approaches.
National Medical Research Treatment and Rehabilitation Centre, Moscow, Russia
Institute of Antimicrobial Chemotherapy, Smolensk, Russia
Institute of Antimicrobial Chemotherapy, Smolensk, Russia
-
1.
World Health Organization. WHO global strategy for containment of antimicrobial resistance. 2001. Available at: https://iris.who.int/handle/10665/66860. Accessed April 11, 2025.
-
2.
World Health Organization. Ten threats to global health in 2019. 2019. Available at: www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019. Accessed April 11, 2025.
-
3.
OECD-WHO. Addressing the burden of infections and antimicrobial resistance associated with health care. 2025. Available at: www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/antimicrobial-resistance-andpandemics/addressing-burden-of-infections-and-amrassociated-with-health-care.pdf. Accessed April 11, 2025.
-
4.
Balasubramanian R., Van Boeckel T.P., Carmeli Y., Cosgrove S., Laxminarayan R. Global incidence in hospital-associated infections resistant to antibiotics: an analysis of point prevalence surveys from 99 countries. PLoS Med. 2023;20(6):e1004178.
DOI: 10.1371/journal.pmed.1004178
-
5.
Infection Prevention and Control. Global report on infection prevention and control 2024. Available at: www.who.int/publications/i/item/9789240103986. Accessed April 11, 2025.
-
6.
World Health Organization. Global action plan on antimicrobial resistance. 2016. Available at: www.who.int/publications/i/item/9789241509763. Accessed April 11, 2025. Russian.
-
7.
World Health Organization. Global antimicrobial resistance surveillance system: manual for early implementation. 2016. Available at: https://iris.who.int/handle/10665/249579. Accessed April 11, 2025. Russian.
-
8.
Kuzmenkov A.Yu., Vinogradova A.G., Trushin I.V., Edelstein M.V., Avramenko A.A., Dekhnich A.V., et al. AMRmap – antibiotic resistance surveillance system in Russia. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2021;23(2):198-204. Russian.
DOI: 10.36488/cmac.2021.2.198-204
-
9.
Vinogradova A.G., Kuzmenkov A.Yu. Application of AMRmap: «from the general to the specific» approach by the example of Klebsiella pneumoniae. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2019;21(2):181-186. Russian.
DOI: 10.36488/cmac.2019.2.181-186
-
10.
Tacconelli E., Sifakis F., Harbarth S., Schrijver R., Mourik M., Voss A., et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99-e106.
DOI: 10.1016/S1473-3099(17)30485-1
-
11.
Turner P., Rupali P., Opintan J.A., Jaoko W., Feasey N., Peacock S., et al. Laboratory informatics capacity for effective antimicrobial resistance surveillance in resourcelimited settings. Lancet Infect Dis. 2021;21(6):e170-e174.
DOI: 10.1016/s1473-3099(20)30835-5
-
12.
Luz C.F., Berends M.S., Zhou X., Lokate M., Friedrich A., Sinha B., et al. Better antimicrobial resistance data analysis and reporting in less time. JAC Antimicrob Resist. 2023;5(1):dlac143.
DOI: 10.1093/jacamr/dlac143
-
13.
Grundmann H. Towards a global antibiotic resistance surveillance system: a primer for a roadmap. Ups J Med Sci. 2014;119(2):87-95.
DOI: 10.3109/03009734.2014.904458
-
14.
Barlam T.F., Cosgrove S.E., Abbo L.M., MacDougall C., Schuetz A., Septimus E., et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51-e77.
DOI: 10.1093/cid/ciw118
-
15.
World Health Organization. Antimicrobial stewardship programmes in health-care facilities in low-and middleincome countries: a WHO practical toolkit. 2020:71. Available at: www.who.int/ru/publications/i/item/9789241515481. Accessed April 11, 2025. Russian.
-
16.
Yakovlev S.V., Briko N.I., Sidorenko S.V., Procenko D.N. Antibiotic stewardship program for inpatient care. 2018. 156 p. Russian.
-
17.
Brown E.M. Guidelines for antibiotic usage in hospitals. J Antimicrob Chemother. 2002;49(4):587-592.
DOI: 10.1093/jac/49.4.587
-
18.
Kuzmenkov A.Yu., Vinogradova A.G., Trushin I.V., Kozlov R.S. Practice of local antibiotic resistance monitoring at hospitals in various regions of the Russian Federation. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2022;24(1):31-38. Russian.
DOI: 10.36488/cmac.2022.1.31-38
-
19.
Do P.C., Assefa Y.A., Batikawai S.M., Reid S.A. Strengthening antimicrobial resistance surveillance systems: a scoping review. BMC Infect Dis. 2023;23(1):593.
DOI: 10.1186/s12879-023-08585-2
-
20.
Simner P.J., Hindler J.A., Bhowmick T., Das S., Johnson J., Lubers B., et al. What’s new in antibiograms? Updating CLSI M39 guidance with current trends. J Clin Microbiol. 2022;60(10):e0221021.
DOI: 10.1128/jcm.02210-21
-
21.
World Health Organization. Central Asian and European Surveillance of Antimicrobial Resistance: CAESAR manual: version 3.0, 2019. 2020:113. Available at: https://iris.who.int/handle/10665/346573. Accessed April 11, 2025. Russian.
-
22.
Cornaglia G., Hryniewicz W., Jarlier V., Kahlmeter G., Mittermayer H., Stratchounski L., et al. European recommendations for antimicrobial resistance surveillance. Clin Microbiol Infect. 2004;10(4):349-383.
DOI: 10.1111/j.1198-743x.2004.00887.x
-
23.
Avramenko A.A., Burasova E.G., Vinogradova A.G., Gusarov V.G., Ershova O.N., Zamyatin M.N., et al. Antibiotic Resistance Monitoring Using the AMRcloud Platform: A Practical Guide. S.: SSMU, 2021. 160 p. Russian.
-
24.
Methodological recommendations MR 3.1.0346-24 «Organization and implementation of microbiological monitoring in medical organizations» (approved by the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing on April 26, 2024.). Available at: www.garant.ru/products/ipo/prime/doc/408994558/. Accessed April 11, 2025. Russian.
-
25.
World Health Organization. GLASS manual for antimicrobial resistance surveillance in common bacteria causing human infection. Published online, 2023. Available at: www.who.int/publications/i/item/9789240076600. Accessed April 11, 2025.
-
26.
Fridkin S.K., Edwards J.R., Tenover F.C., Gaynes R.P., McGowan J.E., et al. Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Clin Infect Dis. 2001;33(3):324-330.
DOI: 10.1086/321893
-
27.
Dakorah M.P., Agyare E., Acolatse J.E., Akafity G., Stelling J., Chalker V., et al. Utilising cumulative antibiogram data to enhance antibiotic stewardship capacity in the Cape Coast Teaching Hospital, Ghana. Antimicrob Resist Infect Control. 2022;11(1):122.
DOI: 10.1186/s13756-022-01160-5
-
28.
Mitrokhin S.D., Orlova O.E., Gosteva I.V., Shkoda A.S. Appointment of antimicrobial medications in a hospital depending on the results of microbiological monitoring of HAI. Antibiotiki i himioterapiya. 2020;65(9-10):21-27. Russian.
DOI: 10.37489/0235-2990-2020-65-9-10-21-27
-
29.
Morel C.M., De Kraker M.E., Harbarth S., the Enhanced Surveillance Expert Consensus Group (CANSORT-SCI). Surveillance of resistance to new antibiotics in an era of limited treatment options. Front Med. 2021;8:652638.
DOI: 10.3389/fmed.2021.652638
-
30.
World Health Organization. Antimicrobial stewardship interventions: a practical guide. 2021. Available at: https://iris.who.int/bitstream/handle/10665/340709/9789289054980-eng.pdf Accessed April 15, 2025.
-
31.
Barlam T.F., Cosgrove S.E., Abbo L.M., MacDougall C., Schuetz A., Septimus E., et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51-e77.
DOI: 10.1093/cid/ciw118
-
32.
World Health Organization. Surveillance standards for antimicrobial resistance. 2002. Available at: https://iris.who.int/bitstream/handle/10665/67426/WHO_CDS_CSR_DRS_2001.5.pdf?sequence=1. Accessed April 15, 2025.
-
33.
Lim C., Ashley E.A., Hamers R.L, Turner P., Kesteman T., Akech S., et al. Surveillance strategies using routine microbiology for antimicrobial resistance in low- and middleincome countries. Clin Microbiol Infect. 2021;27(10): 1391-1399.
DOI: 10.1016/j.cmi.2021.05.037
-
34.
Turner P., Ashley E.A., Celhay O.J., Douangnouvong A., Hamers R., Ling C., et al. ACORN (A Clinically-Oriented Antimicrobial Resistance Surveillance Network): a pilot protocol for case based antimicrobial resistance surveillance. Wellcome Open Res. 2020;5:13.
DOI: 10.12688/wellcomeopenres.15681.1
-
35.
Ashley E.A., Recht J., Chua A., Dance D., Dhorda M.,Thomas N., et al. An inventory of supranational antimicrobial resistance surveillance networks involving low- and middleincome countries since 2000. J Antimicrob Chemother. 2018;73(7):1737-1749.
DOI: 10.1093/jac/dky026
-
36.
Ashley E.A., McLean A., Chiara F., Feasey N., Jaoko W., Opintan J., et al. Setting priorities for patient-centered surveillance of drug-resistant infections. Int J Infect Dis. 2020;97:60-65.
DOI: 10.1016/j.ijid.2020.05.121
-
37.
Hindler J.F., Stelling J. Analysis and presentation of cumulative antibiograms: a new consensus guideline from the Clinical and Laboratory Standards Institute. Clin Infect Dis. 2007;44(6):867-873.
DOI: 10.1086/511864
-
38.
Rempel O.R., Laupland K.B. Surveillance for antimicrobial resistant organisms: potential sources and magnitude of bias. Epidemiol Infect. 2009;137(12):1665-1673.
DOI: 10.1017/s0950268809990100
-
39.
Ryu S., Cowling B.J., Wu P., Olesen S., Fraser C., Sun D., et al. Case-based surveillance of antimicrobial resistance with full susceptibility profiles. JAC Antimicrob Resist. 2019;1(3):dlz070.
DOI: 10.1093/jacamr/dlz070
-
40.
Vinogradova A.G., Kuzmenkov A.Yu. Data handling as a basis for local antimicrobial resistance surveillance. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2020;22(2):137-141. Russian.
DOI: 10.36488/cmac.2020.2.137-141
-
41.
Safdari R., Ghazi Saeedi M., Masoumi-Asl H., RezaeiHachesu P., Mirnia K., Mohammadzadeh N., et al. National minimum data set for antimicrobial resistance management: toward global surveillance system. Iran J Med Sci. 2018;43(5):494-505. PMID: 30214102.
-
42.
Yao H., Suo J., Xing Y., Du M., Bai Y., Liu B., et al. The minimum data set and quality indicators for national healthcare-associated infection surveillance in Mainland China: towards precision management. BioMed Research International. 2019;2019:1-7.
DOI: 10.1155/2019/2936264
-
43.
Moehring R.W., Hazen K.C., Hawkins M.R., Drew R.H., Sexton D.J., Anderson D.J. Challenges in preparation of cumulative antibiogram reports for community hospitals. J Clin Microbiol. 2015;53(9):2977-2982.
DOI: 10.1128/jcm.01077-15
-
44.
Tran C., Hargy J., Hess B., Pettengill M.A. Estimated impact of low isolate numbers on the reliability of cumulative antibiogram data. Microbiol Spectr. 2023;11(1):e0393922.
DOI: 10.1128/spectrum.03939-22
-
45.
Viloria Winnett A., Srinivasan V., Davis M., Vijayan T., Uslan D., Garner O., et al. The path of more resistance: a comparison of National Healthcare Safety Network and Clinical Laboratory Standards Institute Criteria in developing cumulative antimicrobial susceptibility test reports and institutional antibiograms. J Clin Microbiol. 2022;60(2):e0136621.
DOI: 10.1128/jcm.01366-21
-
46.
Magee J.T. Effects of duplicate and screening isolates on surveillance of community and hospital antibiotic resistance. J Antimicrob Chemother. 2004;54(1):155-162.
DOI: 10.1093/jac/dkh295
-
47.
Kohlmann R., Gatermann S.G. Analysis and presentation of cumulative antimicrobial susceptibility test data – the influence of different parameters in a routine clinical microbiology laboratory. PLoS One. 2016;11(1):e0147965.
DOI: 10.1371/journal.pone.0147965
-
48.
Kim S., Yoo S.J., Chang J. Importance of susceptibility rate of the «first» isolate: evidence of real-world data. Medicina. 2020;56(10):507.
DOI: 10.3390/medicina56100507
-
49.
Kajihara T., Yahara K., Stelling J., Eremin S., Tornimbene B., Thamlikitkul V., et al. Comparison of de-duplication methods used by WHO Global Antimicrobial Resistance Surveillance System (GLASS) and Japan Nosocomial Infections Surveillance (JANIS) in the surveillance of antimicrobial resistance. PLoS One. 2020;15(6):e0228234.
DOI: 10.1371/journal.pone.0228234
-
50.
Kuzmenkov A.Yu. Etiological structure of hospitalacquired surgical infections in multi-profile hospitals in Russian Federation. Vestnik of the Smolensk State Medical Academy. 2017;16(3):84-89. Russian.
-
51.
Vinogradova A.G., Kuzmenkov A.Yu., Trushin I.V., Sukhorukova M.V., Kozlov R.S. Systemic analysis of the AST results in medical organizations of the Russian Federation. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2023;25(2):179-186. Russian.
DOI: 10.36488/cmac.2023.2.179-186
-
52.
Vinogradova A.G., Kuzmenkov A.Yu., Trushin I.V., Edelstein M.V., Sukhorukova M.V., Starostenkov A.A. AMRexpert – online platform for interpretation, verification and validation of antimicrobial susceptibility testing. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2023;25(1):68-76. Russian.
DOI: 10.36488/cmac.2023.1.68-76
-
53.
Simpao A., Ahumada L., Larru Martinez B., Cardenas A., Metjian T., Sullivan K., et al. Design and implementation of a visual analytics electronic antibiogram within an electronic health record system at a tertiary pediatric hospital. Appl Clin Inform. 2018;9(1):37-45.
DOI: 10.1055/s-0037-1615787
-
54.
Kuzmenkov A.Yu., Vinogradova A.G., Trushin I.V., Avramenko A.A., Edelstein M.V., Dekhnich A.V., et al. AMRcloud: a new paradigm in monitoring of antibiotic resistance. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2019;21(2):119-124. Russian.
DOI: 10.36488/cmac.2019.2.119-124
-
55.
AMRnote – an online platform for creating, editing, and sharing treatment protocols and algorithms. Available at: https://amrnote.net/ru/. Accessed April 11, 2025. Russian.
-
56.
Berends M.S., Luz C.F., Friedrich A.W., Sinha B.N., Albers C.J., Glasner C. AMR: an R package for working with antimicrobial resistance data. J Stat Soft. 2022;104(3):1-31.
DOI: 10.18637/jss.v104.i03
-
57.
O’Brien T.F., Stelling J.M. WHONET: an information system for monitoring antimicrobial resistance. Emerg Infect Dis. 1995;1(2):66.
DOI: 10.3201/eid0102.950209
-
58.
Truong W.R., Hidayat L., Bolaris M.A., Nguyen L., Yamaki J. The antibiogram: key considerations for its development and utilization. JAC Antimicrob Resist. 2021;3(2):dlab060.
DOI: 10.1093/jacamr/dlab060
-
59.
Auzin A., Spits M., Tacconelli E., Rodriguez-Bano J., Hulscher M., Adang E., et al. What is the evidence base of used aggregated antibiotic resistance percentages to change empirical antibiotic treatment? A scoping review. Clin Microbiol Infect. 2022;28(7):928-935.
DOI: 10.1016/j.cmi.2021.12.003
-
60.
World Health Organization. WHO model prescribing information: drugs used in bacterial infections. 2001. Available at: https://iris.who.int/handle/10665/42372. Accessed April 21, 2025.
-
61.
Solomkin J.S., Mazuski J.E., Bradley J.S., Rodvold K., Goldstein E., Baron E., et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(2):133-164.
DOI: 10.1086/649554
-
62.
Kalil A.C., Metersky M.L., Klompas M., Muscedere J., Sweeney D., Palmer L., et al. management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61-e111.
DOI: 10.1093/cid/ciw353
-
63.
Warren J.W., Abrutyn E., Hebel J.R., Johnson J.R., Schaeffer A.J., Stamm W.E. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Clin Infect Dis. 1999;29(4):745-758.
DOI: 10.1086/520427
-
64.
Gupta K., Hooton T.M., Naber K.G., Wullt B., Colgan R., Miller L., et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103-e120.
DOI: 10.1093/cid/ciq257
-
65.
Daneman N., Low D.E., McGeer A., Green K.A., Fisman D.N. At the threshold: defining clinically meaningful resistance thresholds for antibiotic choice in communityacquired pneumonia. Clin Infect Dis. 2008;46(8):1131-1138.
DOI: 10.1086/529440
-
66.
Hasegawa S., Perencevich E.N., Dukes K., Goto M. Physicians’ acceptable treatment failure rates and interpretation of antibiogram for Gram-negative infections: a pilot survey study of infectious diseases specialists. Open Forum Infect Dis. 2022;9(Suppl. 2):ofac492.807.
DOI: 10.1093/ofid/ofac492.807
-
67.
Cressman A.M., MacFadden D.R., Verma A.A., Razak F., Daneman N. Empiric antibiotic treatment thresholds for serious bacterial infections: a scenario-based survey study. Clin Infect Dis. 2019;69(6):930-937.
DOI: 10.1093/cid/ciy1031
-
68.
Vu T.L., Vu Q.D., Hoang B.L., Nguyen T., Ta T., Nadjm B., et al. Factors influencing choices of empirical antibiotic treatment for bacterial infections in a scenario-based survey in Vietnam. JAC Antimicrob Resist. 2020;2(4):dlaa087.
DOI: 10.1093/jacamr/dlaa087
-
69.
Ippolito M., Cortegiani A. Empirical decision-making for antimicrobial therapy in critically ill patients. BJA Education. 2023;23(12):480-487.
DOI: 10.1016/j.bjae.2023.09.001
-
70.
Strich J.R., Heil E.L., Masur H. Considerations for empiric antimicrobial therapy in sepsis and septic shock in an era of antimicrobial resistance. J Infect Dis. 2020;222(Suppl. 2):S119-S131.
DOI: 10.1093/infdis/jiaa221