Abstract
Measles virus causes an acute infectious disease with high contagiousness. It is possible to limit the spread of measles virus only with a sufficiently wide coverage of the population by vaccination. Despite the success of measles elimination programs, many countries have seen an increase in the incidence of measles in recent years, making early diagnosis increasingly important. The importance of laboratory diagnosis is related to the difficulties of clinical differential diagnosis of measles in the early stages of the disease. This review is devoted to an analysis of existing methods for diagnosing measles. It demonstrates the limitations of the most commonly used method, the enzyme immunoassay, and the need to develop and implement alternative diagnostic methods. Particular attention in the review is paid to molecular diagnostic methods, the sensitivity of which is reviewed for different types of biological sampled at different stages of the disease. Characteristics of the measles virus that are of key importance in the development of PCR tests are described. Studies evaluating the significance of introducing PCR in the routine diagnosis of measles are presented. The main advantages of molecular methods are the possibility of early detection of the virus and the possibility of simultaneous detection of several pathogens, which allows differential diagnosis of diseases with a similar clinical presentation. The development and implementation of rapid and accurate approaches based on molecular diagnostic methods into the health care system is an urgent need in the implementation of global and local programs for the elimination of measles.
Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
-
1.
The World Health Organization. Manual for the laboratory diagnosis of measles and rubella virus infection. 2nd ed. No. WHO/IVB/07.01.; 2007. 109 p.
-
2.
Rota P.A., Moss W.J., Takeda M., de Swart R.L., Thompson K.M., Goodson J.L. Measles. Nat Rev Dis Primers. 2016;2:16049-16049.
DOI: 10.1038/nrdp.2016.49
-
3.
Semenenko T.A., Smetanina, S.V., Kolobukhina, L.V., Karetkina G.N., Nozdracheva A.V., Kruzhkova I.S., et al. Measles: epidemiological features during the elimination period, modern possibilities for prevention, diagnosis and treatment. Significance of serological study of population immunity of the population. Guidelines No.74. M.: 2020. 38 p. Russian.
-
4.
Tsvirkun O.V., Tikhonova N.T., Turaeva N.V., Yezhlova E.B., Melnikova A.A., Gerasimova A.G. Characteristics of population immunity to measles in the Russian Federation. Epidemiology and vaccination. 2020;19(4):6-13. Russian.
DOI: 10.31631/2073-3046-202019-4-6-13
-
5.
The World Health Organization. Measles. Available at: at: www.who.int/news-room/fact-sheets/detail/measles. Accessed March 2023.
-
6.
The World Health Organization. Measles – number of reported cases. Available at: www.who.int/data/gho/data/indicators/indicator-details/GHO/measles–number-of-reported-cases. Accessed March 2023.
-
7.
On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. M.: Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2020. 299 p. Russian.
-
8.
The incidence of measles and rubella in Russia in 2019: Newsletter No. 31. G.N. Gabrichevsky research institute for epidemiology and microbiology of Rospotrebnadzor. M.: 2020. 35 p. Russian.
-
9.
Dixon M.G., Ferrari M., Antoni S., Li X., Portnoy A., Lambert B., et al. Progress toward regional measles elimination – worldwide, 2000-2020. Morb Mortal Wkly Rep. 2021;70(45):1563.
DOI: 10.15585/mmwr.mm7045a1
-
10.
Refugees from Ukraine recorded by country. Available at: https://data.unhcr.org/en/situations/ukraine. Accessed Mar 2023.
-
11.
Nozdracheva A.V., Semenenko T.A. The state of population immunity to measles in Russia: a systematic review and meta-analysis of epidemiological studies. Journal of microbiology, epidemiology and immunobiology. 2020;5:445-457. Russian.
DOI: 10.36233/0372-9311-2020-97-5-7
-
12.
Rota P.A., Bellini W.J. Update on the global distribution of genotypes of wild type measles viruses. J Infect Dis. 2003;187(1):S270-S276.
DOI: 10.1086/368042
-
13.
Global measles and rubella monthly update. Available at: http://who-wiise-frontend-prod-cdn.azureedge.net/listing.html?topic=measles-rubella&location=. Accessed March 2023.
-
14.
Griffin D.E. Measles virus persistence and its consequences. Curr Opin Virol. 2020;41:46-51.
DOI: 10.1016/j.coviro.2020.03.003
-
15.
Griffin D.E. Measles vaccine. Viral immunology. 2018;31(2):86-95.
DOI: 10.1089/vim.2017.0143
-
16.
Griffin D.E. The immune response in measles: virus control, clearance and protective immunity. Viruses. 2016;8(10):282.
DOI: 10.3390/v8100282
-
17.
Moss W.J. Measles. Lancet. 2017;390:2490-2502.
DOI: 10.1016/S0140-6736(17)31463-0
-
18.
Riddell M.A., Moss W.J., Hauer D., Monze M., Griffin D.E. Slow clearance of measles virus RNA after acute infection. J Clin Virol. 2007;39(4):312-317.
DOI: 10.1016/j.jcv.2007.05.006
-
19.
Lin W.H.W., Kouyos R.D., Adams R.J., Grenfell B.T., Griffin D.E. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci U S A. 2012;109(37):14989-14994.
DOI: 10.1073/pnas.1211138109
-
20.
Mina M.J., Kula T., Leng Y., Li M., Vries R., Knip M., et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019; 366(6465):599-606.
DOI: 10.1126/science.aay6485
-
21.
Abad C.L., Safdar N. The reemergence of measles. Curr Infect Dis Rep. 2015;17(12):1-8.
DOI: 10.1007/s11908-015-0506-5
-
22.
Yu X., Ghildyal R. Measles virus infection: mechanisms of immune suppression. In: Immunosuppression: role in health and diseases; 2012. Chapter 12.
DOI: 10.5772/29662
-
23.
Paules C.I., Marston H.D., Fauci A.S. Measles in 2019 – going backward. N Engl J Med. 2019;380(23):21852187.
DOI: 10.1056/NEJMp1905099
-
24.
The World Health Organization. Surveillance guidelines for measles, rubella and congenital rubella syndrome in the WHO European Region: update December 2012. No. WHO/EURO:2012-4544-44307-62588; 2012. 64 p.
-
25.
Mamaeva T.A., Zheleznova N.V., Naumova M.A., Govorukhina M.V., Kalashnikova N.A., Bichurina M.A., et al. Algorithm for laboratory confirmation and differential diagnosis of measles infection during measles elimination In Russian Federation. Infection and immunity. 2015;5(1):5562. Russian.
DOI: 10.15789/2220-7619-2015-1-55-62
-
26.
Bellini W.J., Helfand R.F. The challenges and strategies for laboratory diagnosis of measles in an international setting. J Infect Dis. 2003;187(1):S283-S290.
DOI: 10.1086/368040
-
27.
Mamaeva T.A., Naumova M.A., Zheleznova N.V., Lipskaya G.Y. Evaluation of commercial ELISA test systems of various formats for determining the level of specific IgM and IgG in the sera of patients with measles. Questions of virology. 2013;58(5):43-48. Russian.
-
28.
Hiebert J., Zubach V., Charlton C., Fenton J., Tipples G., Fonseca K., et al. Evaluation of diagnostic accuracy of eight commercial assays for the detection of measles virus-specific IgM antibodies. J Clin Microbiol. 2021;59(6):e0316120.
DOI: 10.1128/JCM.03161-20
-
29.
Woods C.R. False-positive results for immunoglobulin M serologic results: explanations and examples. J Pediatric Infect Dis Society. 2013;2(1):87-90.
DOI: 10.1093/jpids/pis133
-
30.
Cui A., Mao N., Wang H., Xu S., Zhi Z., Ji Y., et al. Importance of real-time RT-PCR to supplement the laboratory diagnosis in the measles elimination program in China. PloS One. 2018;13(11):e0208161.
DOI: 10.1371/journal.pone.0208161
-
31.
Benamar T., Tajounte L., Alla A., Khebba F., Ahmed H., Mulders M.N., et al. Real-time PCR for measles virus detection on clinical specimens with negative IgM result in Morocco. PLoS One. 2016;11(1):e0147154.
DOI: 10.1371/journal.pone.0147154
-
32.
Hübschen J.M., Bork S.M., Brown K.E., Mankertz A., Santibanez S., Mamou M.B., et al. Challenges of measles and rubella laboratory diagnostic in the era of elimination. Clin Microbiol Infect. 2017;23(8):511-515.
DOI: 10.1016/j.cmi.2017.04.009
-
33.
Hickman C.J., Hyde T.B., Sowers S.B., Mercader S., McGrew M., Williams N.J., et al. Laboratory characterization of measles virus infection in previously vaccinated and unvaccinated individuals. J Infect Dis. 2011;204(1):S549-S558.
DOI: 10.1093/infdis/jir106
-
34.
Sowers S.B., Rota J.S., Hickman C.J., Mercader S., Redd S., McNall R.J., et al. High concentrations of measles neutralizing antibodies and high-avidity measles IgG accurately identify measles reinfection cases. Clin Vaccine Immunol. 2016;23(8):707-716.
DOI: 10.1128/CVI.00268-16
-
35.
Chua K.Y.L., Thapa K., Yapa C.M., Somerville L.K., Chen S.C.A., Dwyer D.E., et al. What assay is optimal for the diagnosis of measles virus infection? An evaluation of the performance of a measles virus real-time reverse transcriptase PCR using the Cepheid SmartCycler® and antigen detection by immunofluorescence. J Clin Virol. 2015;70:46-52.
DOI: 10.1016/j.jcv.2015.07.004
-
36.
Woo G.K., Wong A.H., Lee W.Y., Lau C.S., Cheng P.K., Leung P.C., et al. Comparison of laboratory diagnostic methods for measles infection and identification of measles virus genotypes in Hong Kong. J Med Virol. 2010;82(10):1773-1781.
DOI: 10.1002/jmv.21888
-
37.
Michel Y., Saloum K., Tournier C., Quinet B., Lassel L., Pérignon A., et al. Rapid molecular diagnosis of measles virus infection in an epidemic setting. J Med Virol. 2013;85(4):723-730.
DOI: 10.1002/jmv.23515
-
38.
Beaty S.M., Lee B. Constraints on the genetic and antigenic variability of measles virus. Viruses. 2016;8(4):109.
DOI: 10.3390/v8040109
-
39.
Horikami S.M., Moyer S.A. Structure, transcription, and replication of measles virus. In: Measles virus; 1995. 35-50 p.
-
40.
Harvala H. Wiman Å., Wallensten A., Zakikhany K., Englund H., Brytting M. Role of sequencing the measles virus hemagglutinin gene and hypervariable region in the measles outbreak investigations in Sweden during 2013-2014. J Infect Dis. 2016;213(4):592-599.
DOI: 10.1093/infdis/jiv434
-
41.
Schneider-Schaulies S., Liebert U.G., Baczko K., Cattaneo R., Billeter M., Ter Meulen V. Restriction of measles virus gene expression in acute and subacute encephalitis of Lewis rats. Virology. 1989;171(2):525-534.
DOI: 10.1016/0042-6822(89)90622-3
-
42.
Cattaneo R., Rebmann G., Baczko K., ter Meulen V., Billeter M.A. Altered ratios of measles virus transcripts in diseased human brains. Virology. 1987;160(2):523-526.
DOI: 10.1016/0042-6822(87)90031-6
-
43.
Hummel K.B., Lowe L., Bellini W., Rota P. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods. 2006;132(1-2):166-173.
DOI: 10.1016/j.jviromet.2005.10.006
-
44.
Zubach V., Severini A., Hiebert J. Development of a rapid, internally controlled, two target, realtime RT-PCR for detection of measles virus. J Virol Methods. 2022;299:114349.
DOI: 10.1016/j.jviromet.2021.114349
-
45.
Yoshioka N., Hagiya H., Deguchi M., Hamaguchi S., Kagita M., Tomono K. Simultaneous and rapid detection method for measles and rubella using singletube multiplex real-time quantitative RT-PCR. J Infect Chemother. 2019;25(10):829-831.
DOI: 10.1016/j.jiac.2019.05.005
-
46.
Pabbaraju K., Gill K., Wong A.A., Tipples G.A., Hiebert J., Severini A., et al. Simultaneous detection and differentiation between wild-type and vaccine measles viruses by a multiplex real-time reverse transcription-PCR assay. J Clin Microbiol. 2019;57(4):e01828-18.
DOI: 10.1128/JCM.01828-18
-
47.
Dina J., Omnes J., Vauloup-Fellous C., Collet L., Hamel J., Antona D., et al. True measles cases undetected by Reverse Transcription-PCR (RT-PCR): effect of genetic variability on assay sensitivity needs to be regularly surveyed. J Clin Microbiol. 2019;57(8):e00341-19.
DOI: 10.1128/JCM.00341-19
-
48.
Binkhamis K., Gillis H., Lafreniere J.D., Hiebert J., Mendoza L., Pettipas J., et al. Comparison of monoplex and duplex RT-PCR assays for the detection of measles virus. J Virol Methods. 2017;239:58-60.
DOI: 10.1016/j.jviromet.2016.11.003
-
49.
Hübschen J.M., Kremer J.R., De Landtsheer S., Muller C.P. A multiplex TaqMan PCR assay for the detection of measles and rubella virus. J Virol Methods. 2008;149(2):246250.
DOI: 10.1016/j.jviromet.2008.01.032
-
50.
Cui A., Wang S., Zhang Q., Wang H., Zhu Z., Li A., et al. Development of a multiplex one-step real-time RTPCR assay for the simultaneous detection of eight viruses associated with febrile rash illnesses. Biosafety Health. 2020;2(2):89-94.
DOI: 10.1016/j.bsheal.2020.04.003
-
51.
The World Health Organization. Weekly Epidemiological Record. 2017;92(17):205-228.
-
52.
Stanoeva K.R., Kohl R.H.G., Bodewes R. Co-detection of the measles vaccine and wild-type virus by real-time PCR: public health laboratory protocol. Access Microbiol. 2021;3(11).
DOI: 10.1099/acmi.0.000283
-
53.
Nakayama T., Sawada A., Kubo H., Kaida A., Tanaka T., Shigemoto N., et al. Simple method for differentiating measles vaccine from wild‐type strains using loop‐mediated isothermal amplification. Microbiol Immunol. 2013;57(3):246-251.
DOI: 10.1111/13480421.12029
-
54.
Ma R., Lu L., Suo L., Zhangzhu J., Chen M., Pang X. Evaluation of the adequacy of measles laboratory diagnostic tests in the era of accelerating measles elimination in Beijing, China. Vaccine. 2019;37(29):3804-3809.
DOI: 10.1016/j.vaccine.2019.05.058
-
55.
Prevention of measles, rubella and epidemiological parotitis: Sanitary rules. M .: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2012. 23 p. Russian.