Abstract
Chronic obstructive pulmonary disease (COPD) is a serious problem for global health. Infectious agents play a main role in the development of COPD exacerbations. Bacterial colonization of the lower respiratory tract is common in patients with stable COPD. The role of microbiota and host immune response to potential pathogens is not well studied. Microbiota composition disorders in respiratory tract are found in patients with COPD and associated with maladaptive changes in the immune system of the lungs and increased level of inflammation. This review investigates role of microbiota in the pathogenesis of COPD and its impact on the course of the disease. Some important issues such as pneumococcal vaccination and antimicrobial resistance of respiratory pathogens are also discussed.
Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology, Nizhny Novgorod, Russia
Samara State Medical University, Samara, Russia
Samara State Medical University, Samara, Russia
Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
-
1.
GOLD. Global strategy for prevention, diagnostic and management of COPD: 2022 Report. Available at: https://goldcopd.org/wp-content/uploads/2021/12/GOLDREPORT-2022-v1.1-22Nov2021_WMV.pdf. Accessed April, 2022.
-
2.
Kytikova O.Yu., Gvozdenko T.A., Antonyuk M.V., Novgorodtseva T.P. Sialic acid-binding lectins as potential pathophysiological targets in treatment of chronic bronchopulmonary diseases (review). Sovremennye tehnologii v medicine. 2019;11(4):151-160. Russian.
DOI: 10.17691/stm2019.11.4.18
-
3.
Shpagina L.A., Poteryaeva E.L., Kotova O.S., Shpagin I.S., Smirnova E.L. Actual problems of pulmonology in modern occupational pathology. Medicina truda i promyshlennaja jekologija. 2015;9:11-14. Russian.
-
4.
Solovieva O.G. Alpha1-antitrypsin deficiency in the practice of a pulmonologist. Pul'monologija. 2015;4:505508. Russian.
DOI: 10.18093/0869-0189-201525-4-505-508
-
5.
Bewley M.A., Preston J.A., Mohasin M., Marriott H.M., Budd R.C., Swales J., et al. Impaired mitochondrial microbicidal responses in chronic obstructive pulmonary disease macrophages. Am J Respir Crit Care Med. 2017;196(7):845-855.
DOI: 10.1164/rccm.2016081714oc
-
6.
Wei X., Ma Z., Yu N., Ren J., Jin C., Mi J., et al. Risk factors predict frequent hospitalization in patients with acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis. 2017;13:121-129.
DOI: 10.2147/copd.s152826
-
7.
Vizel A.A., Salakhova I.N., Vafina A.R., Vizel I.Yu., Ilyinsky V.I., Kudryavtseva E.Z., et al. Clinical characteristics of patients with chronic obstructive pulmonary disease, who were in the pulmonology departments of Kazan. Consilium Medicum. Bolezni organov dyhanija. 2017;1:21-24. Russian.
-
8.
Jinno A., Park P.W. Role of glycosaminoglycans in infectious disease. Methods Mol Biol. 2015;1229:567-585.
DOI: 10.1007/978-1-4939-1714-3_45
-
9.
Kobayashi S., Hanagama M., Ishida M., Sato H., Ono M., Yamanda S., et al. Clinical characteristics and outcomes in Japanese patients with COPD according to the 2017 GOLD classification: the Ishinomaki COPD Network Registry. Int J Chron Obstruct Pulmon Dis. 2018;13:3947-3955.
DOI: 10.2147/copd.s182905
-
10.
Patel N.R., Cunoosamy D.M., Fagerås M., Taib Z., Asimus S., Hegelund-Myrbäck T., et al. The development of AZD7624 for prevention of exacerbations in COPD: a randomized controlled trial. Int J Chron Obstruct Pulmon Dis. 2018;13:1009-1019.
DOI: 10.2147/copd.s150576
-
11.
Liu S.K., Ward M., Montgomery J., Mecchella J.N., Masutani R., Bartels S.J., et al. Association of hospital admission risk profile score with mortality in hospitalized older adults. Innov Aging. 2017;1(1):1-7.
DOI: 10.1093/geroni/igx007
-
12.
Li K., Bihan M., Yooseph S., Methè B.A. Analyses of the microbial diversity across the human microbiome. PLoS One. 2012;7(6):318-321.
DOI: 10.1371/journal.pone.0032118
-
13.
Segal L.N., Alekseyenko A.V., Clemente J.C., Kulkarni R., Wu B., Gao Z., et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome. 2013;1(1):19-25.
DOI: 10.1186/2049-2618-1-19
-
14.
Fletcher C., Peto R., Tinker C., Speizer F. The natural history of chronic bronchitis and emphysema. Oxford University Press. 1976;141(1):119-128.
DOI: 10.2307/2344795
-
15.
Allinson J.P., Hardy R., Donaldson G.C., Shaheen S.O., Kuh D., Wedzicha J.A. The presence of chronic mucus hypersecretion across adult life in relation to chronic obstructive pulmonary disease development. Am J Respir Crit Care. 2016;193(6):662-672.
DOI: 10.1164/rccm.201511-2210oc
-
16.
Ramakrishnan V.R., Ferril G.R., Suh J.D., Woodson T., Green T.J., Kingdom T.T. Upper and lower airways associations in patients with chronic rhinosinusitis and bronchiectasis. Int Forum Allergy Rhinol. 2013;3(11):921927.
DOI: 10.1002/alr.21204
-
17.
Zhang R., Chen L., Cao L., LiK J., Huang Y., Luan X.Q., et al. Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res. 2018;19(1):253-268.
DOI: 10.1186/s12931-018-0959-9
-
18.
Pragman A.A., Lyu T., Baller J.A., Gould T.J., Kelly R.F., Reilly C.S., et al. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome. 2018;6(1):7-19.
DOI: 10.1186/s40168017-0381-4
-
19.
Dickson R.P., Erb-Downward J.R., Freeman C.M., McCloskey L., Beck J.M. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 2015;12:821830.
DOI: 10.1513/annalsats.201501-029oc
-
20.
Erb-Downward J.R., Thompson D.L., Han M.K., Freeman C.M., McCloskey L., Schmidt L.A., et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011;6(2):163-184.
DOI: 10.1371/journal.pone.0016384
-
21.
Sze M.A., Dimitriu P.A., Hayashi S., Elliott W.M., McDonough J.E., Gosselink J.V. et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1073-1080.
DOI: 10.1164/rccm.201111-2075oc
-
22.
Pragman A.A., Kim H.B., Reilly C.S., Wendt C., Isaacson R.E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7(10):1-10.
DOI: 10.1371/journal.pone.0047305
-
23.
Cabrera-Rubio R., Garcia-Núñez M., Setó L., Antó J.M., Moya A., Monsó E., et al. Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol. 2012;50(11):35623578.
DOI: 10.1128/jcm.00767-12
-
24.
Magryś A., Microbiota: a missing link in the pathogenesis of chronic lung inflammatory diseases. Pol J Microbiol. 2021;70(1):25-32.
DOI: 10.33073/pjm-2021-013
-
25.
Haldar K., George L., Wang Z., Mistry V., Ramsheh M.Y., Free R.C., et al. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir Res. 2020;21(1):183-190.
DOI: 10.1186/s12931-02001448-3
-
26.
Ditz B., Christenson S., Rossen J., Brightling C., Kerstjens H.A., van den Berge M., et al. Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax. 2020;75(4):338-344.
DOI: 10.1136/thoraxjnl-2019-214168
-
27.
Einarsson G.G., Comer D.M., Mc.Ilreavey L., Parkhill J., Ennis M., Tunney M.M., et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy nonsmokers. Thorax. 2016;71(9):795-803.
DOI: 10.1136/thoraxjnl-2015-207235
-
28.
Huang Y.J., Sethi S., Murphy T., Nariya S., Boushey H.A., Lynch S.V. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52(8):2813-2823.
DOI: 10.1128/jcm.00035-14
-
29.
Guo M.Y., Chen H.K., Ying H.Z., Qiu F.S., Wu J.Q. The role of respiratory flora in the pathogenesis of chronic respiratory diseases. Biomed Res Int. 2021;6(4):318-362.
DOI: 10.1155/2021/6431862
-
30.
Knudsen K.S., Lehmann S., Nielsen R. The lower airways microbiome and antimicrobial peptides in idiopathic pulmonary fibrosis differ from chronic obstructive pulmonary disease. PLoS One. 2022;17(1):262-282.
DOI: 10.1371/journal.pone.0262082
-
31.
Mika M., Nita I., Morf L., Qi W., Beyeler S., Bernasconi E., et al. Microbial and host immune factors as drivers of COPD. ERJ Open Res. 2018;4(3):2015-2018.
DOI: 10.1183/23120541.00015-2018
-
32.
Paganin P., Fiscarelli E.V., Tuccio V., Chiancianesi M., Bacci G., Morelli P., et al. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function. PLoS One. 2015;10(4):124-348.
DOI: 10.1371/journal.pone.0124348
-
33.
Dy R., Sethi S. The lung microbiome and exacerbations of COPD. Curr Opin Pulm Med. 2016;22(3):196-202.
DOI: 10.1097/mcp.0000000000000268
-
34.
Amatngalim G.D., Vieira R.P., Meiners S., Bartel S. Novel insights in to the effects of cigarette smoke on the airway epithelial surface – lessons learned at the European Respiratory Society International Congress 2018 in Paris. J Thorac Dis. 2018;10(Suppl. 25):2977-2982.
DOI: 10.21037/jtd.2018.08.17
-
35.
McGrath J.C., Stampfli M.R. The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis. 2018;10(Suppl. 17):2011-2017.
DOI: 10.21037/jtd.2018.05.63
-
36.
Garcia G., Perez T., Verbanck S. Functional measurements of the peripheral airways in COPD. Rev Mal Respir. 2012;29(2):319-327.
DOI: 10.1016/j.rmr.2011.09.042
-
37.
Dima E., Kyriakoudi A., Kaponi M., Vasileiadis I., Stamou P., Koutsoukou A., et al. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD). Current perspectives. Respir Med. 2019;157:1-6.
DOI: 10.1016/j.rmed.2019.08.012
-
38.
Haldar K., George L., Wang Z., Mistry V., Ramsheh M.Y., Free R.C., et al. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir Res. 2020;21(1):183-190.
DOI: 10.1186/s12931-02001448-3
-
39.
Burgel P.R., Contoli M., López-Campos J.L. Acute exacerbations of the pulmonary diseases. Sheffield (UK): European Respiratory Society. 2017. 1055 p.
DOI: 10.1183/2312508x.erm7717
-
40.
Yadava K., Pattaroni C., Sichelstiel A.K., Trompette A., Gollwitzer E.S., Salami O., et al. Microbiota promotes chronic pulmonary inflammation by enhancing IL17A and autoantibodies. Am J Respir Crit Care Med. 2016;193(9):975-987.
DOI: 10.1164/rccm.2015040779oc
-
41.
Wang Z., Yang Y., Yan Z., Liu H., Chen B., Liang Z., et al. Multi-omic meta-analysis identifies functional signatures of airway microbiome in chronic obstructive pulmonary disease. ISME. 2020;14(11):2748-2765.
DOI: 10.1038/s41396-020-0727-y
-
42.
Zhou B.R., Zhang J.A., Zhang Q., Permatasari F., Xu Y., Wu D., et al. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha via a NF-kappaB-dependent mechanism in HaCaT keratinocytes. Mediators Inflamm. 2013;5:304-329.
DOI: 10.1155/2014/513027
-
43.
Weeks J.R., Staples K.J., Spalluto C.M., Watson A., Wilkinson T.M. The role of non-typeable Haemophilus influenza biofilms in chronic obstructive pulmonary disease. Front Cell Infect Microbiol. 2021;11:720-742.
DOI: 10.3389/fcimb.2021.720742
-
44.
Sze M.A., Dimitriu P.A., Suzuki M., McDonough J.E., Campbel J.D., Brothers J.F., et al. Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(4):438-445.
DOI: 10.1164/rccm.201502-0223oc
-
45.
Cen X., Liu S., Cheng K. The role of Toll-like receptor in inflammation and tumor immunity. Front Pharmacol. 2018;9:878-900.
DOI: 10.3389/fphar.2018.00878
-
46.
Andryukov B.G., Somova L.A., Timchenko N.F. The study of temperature-dependent molecular mechanisms of infection development as a key to the developerment of modern prophylactic drugs (review). Sovremennye tehnologii v medicine. 2016;8(3):137-150. Russian.
DOI: 10.17691/stm2016.8.3.16
-
47.
Fan V.S., Gharib S.A., Martin T.R., Wurfel M.M. COPD disease severity and innate immune response to pathogenassociated molecular patterns. Int J Chron Obstruct Pulmon Dis. 2016;11:467-77.
DOI: 10.2147/COPD.S94410
-
48.
Wang Z., Bafadhel M., Haldar K., Spivak A., Mayhew D., Miller B.E., et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47(4):1082-1092.
DOI: 10.1183/13993003.01406-2015
-
49.
Garth J., Barnes J.W., Krick S. Targeting cytokines as evolving treatment strategies in chronic inflammatory airway diseases. Int J Mol Sci. 2018;19(11):34-32.
DOI: 10.3390/ijms19113402
-
50.
Morton R., Singanayagam A. The respiratory tract microbiome: moving from correlation to causation. Eur Respir J. 2022;59:2079-2103.
DOI: 10.1183/13993003.03079-2021
-
51.
Larsen J.M., Steen-Jensen D.B., Laursen J.M., Søndergaard J.N., Musavian H.S., Butt T.M., et al. Divergent proinflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota. PLoS One. 2012;7(2):319-376.
DOI: 10.1371/journal.pone.0031976.
-
52.
Richmond B.W., Brucker R.M., Han W., Du R.H., Zhang Y., Cheng D.S., et al. Airway bacteria drive a progressive COPDlike phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun. 2016;7:112-140.
DOI: 10.1038/ncomms11240
-
53.
Klimovich V.B., Samoilovich M.P. Immunoglobulin A (IgA) and its receptors. Medicinskaja immunologija. 2006;8(4):483-500. Russian.
-
54.
Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489-493.
DOI: 10.1126/science.1219328
-
55.
Zhang N., He Q.S. Commensal microbiome promotes resistance to local and systemic infections. Chin Med J. 2015;128:2250-2255.
DOI: 10.4103/03666999.162502
-
56.
Saeedi P., Salimian J., Ahmadi A., Imani Fooladi A.A. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhal Toxicol. 2015;27:451461.
DOI: 10.3109/08958378.2015.1070220
-
57.
Mammen M.J., Sethi S. COPD and the microbiome. Respirology. 2016;21:590-599.
DOI: 10.1111/resp.12732
-
58.
Fodor M.N., Klem E.R., Gilpin D.F., Elborn J.S., Boucher R.C., Tunney M.M., et al. The adult cystic fibrosis air way microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7(9):450-451.
DOI: 10.1371/journal.pone.0045001
-
59.
Tunney M.M., Einarsson G.G., Wei L., Drain M., Klem E.R., CardwelI C., et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med. 2013;187(10):1118-1126.
DOI: 10.1164/rccm.201210-1937oc
-
60.
Alikhan M.M., Lee F.E. Understanding non-typeable Haemophilus influenzae and chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2014;20(2):159-164.
DOI: 10.1097/mcp.0000000000000023
-
61.
Millares L., Pérez-Brocal V., Ferrari R., Gallego M., Pomares X., García-Núñez M., et al. Functional metagenomics of the bronchial microbiome in COPD. PLoS One. 2015; 10(12):144-148.
DOI: 10.1371/journal.pone.0144448
-
62.
Wilkinson T.M. Drivers of year-to-year variation in exacerbation frequency of COPD: analysis of the AERIS cohort. ERJ Open Res. 2019;5:248-2018.
DOI: 10.1183/23120541.50248-2018
-
63.
Diver S., Richardson M., Haldar K., Ghebre M.A., Ramsheh M.Y., Bafadhel M., et al. Sputum microbiomic clustering in asthma and chronic obstructive pulmonary disease reveals a Haemophilus-predominant subgroup. Allergy. 2020;75:808-817.
DOI: 10.1111/all.14058
-
64.
Tufvesson E., Bjermer L., Ekberg M. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation. Int J Chron Obstruct Pulmon Dis. 2015;10:881-889.
DOI: 10.2147/copd.s78748
-
65.
Wang Z., Zhang Y. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am J Respir Crit Care Med. 2021;203(12):14881502.
DOI: 10.1164/rccm.202009-3448OC
-
66.
Barcik W., Boutin R.C., Sokolowska M., Finlay B.B. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020;52:241-255.
DOI: 10.1016/j.immuni.2020.01.007
-
67.
Benitez A.J., Hoffmann C., Muir A.B., Dods K.K., Spergel J.M., Bushman F.D., et al. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome. 2015;3:23.
DOI: 10.1186/s40168-015-0085-6
-
68.
Ruan R., Deng X., Dong X., Wang Q., Lv X., Si C. Microbiota emergencies in the diagnosis of lung diseases: a meta-analysis. Front Cell Infect Microbiol. 2021;11:634709.
DOI: 10.3389/fcimb.2021.709634
-
69.
Liu D.S., Han X.D., Liu X.D. Current status of community acquired pneumonia in patients with chronic obstructive pulmonary disease. Chin Med J. 2018;131:1086-1091.
DOI: 10.4103/0366-6999.230727
-
70.
Pérez-Trallero E., Marimón J.M., Larruskain J., Alonso M., Ercibengoa M. Antimicrobial susceptibilities and serotypes of Streptococcus pneumoniae isolates from elderly patients with pneumonia and acute exacerbation of chronic obstructive pulmonary disease. Antimicrob Agent Chemother. 2011;55(6):2729-2734.
DOI: 10.1128/AAC.01546-10
-
71.
McCarthy H., Jackson M., Corcoran M. Colonisation of Irish patients with chronic obstructive pulmonary disease by Streptococcus pneumoniae and analysis of the pneumococcal vaccine coverage: a non-interventional, observational, prospective cohort study. BMJ Open. 2017;7:139-144.
DOI: 10.1136/bmjopen-2016-013944
-
72.
Hisashi S., Vázquez-Sánchez D.A., Gonzalez-Diaz A., Meritxell C., Tubau F. Overview of pneumococcal serotypes and genotypes causing diseases in patients with chronic obstructive pulmonary disease in a Spanish hospital between 2013 and 2016. Infect Drug Resist. 2018;11:1387-1400.
DOI: 10.2147/idr.s165093
-
73.
O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Available at: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20 the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed June 2022.
-
74.
Vaccines and alternative approaches: reducing our dependence on antimicrobials. Available at: https://amr-review.org/sites/default/files/Vaccines%20and%20alternatives_v4_LR.pdf. Accessed June 2022.
-
75.
Mojica M.F., Rossi M.A., Vila A.J., Bonomo R.A. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2021;18:1473-1499.
DOI: 10.1016/S1473-3099(20)30868-9
-
76.
World Health Organization. PPL Short Summary. Available at: www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf. Accessed June, 2022.
-
77.
Tacconelli E. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318327.
DOI: 10.1016/S1473-3099(17)30753-3
-
78.
James I., Psych M. Antibiotics used for treating COVID-19 patients may result in increased resistance to drugs’ benefits. Available at: www.news-medical.net/news/20200825/Antibiotics-used-for-treating-COVID-19-patients-may-resultin-increased-resistance-to-drugs-benefits.aspx. Accessed May, 2022.
-
79.
Giacomelli A., Ridolfo A.L., Oreni L., Vimercati S., Albrecht M., Cattaneo D., et al. Consumption of antibiotics at an Italian university hospital during the early months of the COVID-19 pandemic: were all antibiotic prescriptions appropriate? Pharmacol Res. 2021;164:40-51.
DOI: 10.1016/j.phrs.2020.105403
-
80.
CDC. Healthcare Settings. Methicillin-resistant Staphylococcus aureus (MRSA) Available at: www.cdc.gov/mrsa/healthcare/index.html. Accessed April, 2022.
-
81.
Mahmoudi H. Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hyg Infect Control. 2020;15:35.
DOI: 10.3205/dgkh000370
-
82.
Rizvi S.G., Ahammad S.Z. COVID-19 and antimicrobial resistance: a cross-study. Sci Total Environ. 2022;807(Pt 2):150873.
DOI: 10.1016/j.scitotenv.2021.150873
-
83.
World Health Organization. Global action plan on antimicrobial resistance. Available at: www.wpro.who.int/entity/drug_resistance/resources/global_action_plan_eng.pdf. Accessed May, 2022.
-
84.
Prescribing information for Prevenar13. Amendment No. 3 dated 09/26/2018. Amendment No. 5 of 08/04/2020. Russian.
-
85.
Kozlov R.S., Andreeva I.V., Stetsyuk O.U., Muravyov A.A. Vaccination against pneumococcal infection in adult patients with comorbidities: a view through the prism of clinical guidelines. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2020;4(22):254-265. Russian.
DOI: 10.36488/cmac.2020.4.254-265
-
86.
Walters J.A., Tang J.N., Poole P., Wood-Baker R. Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews. 2017;1:13-90.
DOI: 10.1002/14651858.CD001390.pub4
-
87.
Tomczyk S., Bennett N.M., Stoecker C., Gierke R., Moore M.R., Whitney C.G., Hadler S., Pilishvili T.; Centers for Disease Control and Prevention (CDC). Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥ 65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2014;63(37):822-825.
DOI: 10.15585/mmwr.mm6846a5
-
88.
Russian Respiratory Society. Clinical guidelines. Chronic obstructive pulmonary disease. Available at: https://cr.minzdrav.gov.ru/recomend/603_2. Accessed April, 2022. Russian.
-
89.
Chuchalin A.G., Briko N.I., Avdeev S.N. Federal clinical guidelines for pneumococcal vaccination in adults. Pul' monologija. 2019;29(1):19-34. Russian.
DOI: 10.18093/0869-0189-2019-29-1-19-34
-
90.
Russian Respiratory Society. Clinical guidelines. Pneumonia. Available at: https://cr.minzdrav.gov.ru/recomend/654_1. Accessed April, 2022. Russian.
-
91.
Protasov A.D., Zhestkov A.V., Kostinov M.P. Vaccination of patients with chronic obstructive pulmonary disease. Guide to Clinical Immunology in Respiratory Medicine. 2nd edition, enlarged. Moscow, "MDV", 2018, 90 p. Russian.
-
92.
WHO. COVID-19 outbreak technical guidance on routine immunization during pandemic in Europe. Available at: www.euro.who.int/ru/health-topics/health-emergencies/coronavirus-covid-19/novel-coronavirus-2019-ncovtechnical-guidance/coronavirus-disease-covid-19outbreak-technical-guidance-europe/guidance-on-routineimmunization-services-during-covid-19-pandemic-in-thewho-european-region-2020. Accessed March, 2022.