Abstract
Psychobiotics are a special class of probiotics that have a beneficial effect on human mental health. During the last decade, convincing evidence has emerged that the gut microbiome influences mental health, cognitive abilities (learning and memory), and behavioral processes through neurological, metabolic, hormonal, and immunological signaling pathways. This review provides available information on the mechanisms of regulation of neuroimmune axes by the microbiota, describes the schemes of interaction of the microbiota with the intestinal nervous system and the brain-gut axis, the effect on behavior, cognitive functions and emotions, and discusses the evidence base and current views on the use of psychobiotics as a safe and effective therapeutic alternative to classic psychotropic drugs in depressive and anxiety disorders, stress, autism spectrum disorders, Alzheimer’s disease and other conditions.
Institute of Antimicrobial Chemotherapy, Smolensk, Russia
Smolensk State Medical University, Smolensk, Russia
Smolensk State Medical University, Smolensk, Russia
Institute of Antimicrobial Chemotherapy, Smolensk, Russia
Moscow University for the Humanities, Moscow, Russia
A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
Institute of Antimicrobial Chemotherapy, Smolensk, Russia
Smolensk State Medical University, Smolensk, Russia
-
1.
Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I. The human microbiome project. Nature. 2007;449(7164):804-810.
DOI: 10.1038/nature06244
-
2.
Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):11151118.
DOI: 10.1126/science.1058709
-
3.
Dinan T.G., Stanton C., Cryan J.F. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720726.
DOI: 10.1016/j.biopsych.2013.05.001
-
4.
Leung K., Thuret S. Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare (Basel). 2015;3(4):898-916.
DOI: 10.3390/healthcare3040898
-
5.
Bercik P., Collins S.M., Verdu E.F. Microbes and the gutbrain axis. Neurogastroenterol Motil. 2012;24(5):405413.
DOI: 10.1111/j.1365-2982.2012.01906.x
-
6.
Kamada N., Seo S.U., Chen G.Y., Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321-335.
DOI: 10.1038/nri3430
-
7.
Collins S.M., Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136:2003-2014.
DOI: 10.1053/j.gastro.2009.01.075
-
8.
Bermúdez-Humarán L.G., Salinas E., Ortiz G.G., RamirezJirano L.J., Morales J.A., Bitzer-Quintero O.K. From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients. 2019;11(4):890.
DOI: 10.3390/nu11040890
-
9.
Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20(2):145-155.
DOI: 10.1038/nn.4476
-
10.
Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735-742.
DOI: 10.1038/nrmicro2876
-
11.
Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701-712.
DOI: 10.1038/nrn3346
-
12.
Diaz Heijtz R., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047-3052.
DOI: 10.1073/pnas.1010529108
-
13.
Tremblay A., Lingrand L., Maillard M., Feuz B., Tompkins T.A. The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2021;105:110142.
DOI: 10.1016/j.pnpbp.2020.110142
-
14.
Sharma R., Gupta D., Mehrotra R., Mago P. Psychobiotics: the next-generation probiotics for the brain. Curr Microbiol. 2021;78(2):449-463.
DOI: 10.1007/s00284-02002289-5
-
15.
Cheng L.H., Liu Y.W., Wu C.C., Wang S., Tsai Y.C. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J Food Drug Anal. 2019;27(3):632648.
DOI: 10.1016/j.jfda.2019.01.002
-
16.
Gualtieri P., Marchetti M., Cioccoloni G., De Lorenzo A., Romano L., Cammarano A., et al. Psychobiotics regulate the anxiety symptoms in carriers of allele A of IL-1β gene: a randomized, placebo-controlled clinical trial. Mediators Inflamm. 2020;1-11.
DOI: 10.1155/2020/2346126
-
17.
Vaghef-Mehrabany E., Maleki V., Behrooz M., Ranjbar F., Ebrahimi-Mameghani M. Can psychobiotics moodify gut? An update systematic review of randomized controlled trials in healthy and clinical subjects, on anti-depressant effects of probiotics, prebiotics, and synbiotics. Clin Nutr. 2020;39(5):1395-1410.
DOI: 10.1016/j.clnu.2019.06.004
-
18.
Sundman E., Olofsson P.S. Neural control of the immune system. Adv Physiol Educ. 2014;38:135-139.
DOI: 10.1152/advan.00094.2013
-
19.
Nayak D., Roth T.L., McGavern D.B. Microglia development and function. Annu Rev Immunol. 2014;32:367402.
DOI: 10.1146/annurev-immunol-032713-120240
-
20.
Nayak D., Zinselmeyer B.H., Corps K.N., McGavern D.B. In vivo dynamics of innate immune sentinels in the CNS. Intravital. 2012;1:95-106.
DOI: 10.4161/intv.22823
-
21.
Hu X., Leak R.K., Shi Y., Suenaga J., Gao Y., Zheng P., et al. Microglial and macrophage polarization – new prospects for brain repair. Nat Rev Neurol. 2015;11:56-64.
DOI: 10.1038/nrneurol.2014.207
-
22.
Dallman M.F., Akana S.F., Levin N., Walker C.D., Bradbury M.J., Suemaru S., et al. Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann N Y Acad Sci. 1994;746:22-31.
DOI: 10.1111/j.1749-6632.1994.tb39206.x
-
23.
Dickmeis T., Weger B.D., Weger M. The circadian clock and glucocorticoids – Interactions across many time scales. Mol Cell Endocrinol. 2013;380:2-15.
DOI: 10.1016/j.mce.2013.05.012
-
24.
Mayer E.A. The neurobiology of stress and gastrointestinal disease. Gut. 2000;47:861-869.
DOI: 10.1136/gut.47.6.861
-
25.
Ma S.T., Abelson J.L., Okada G., Taylor S.F., Liberzon I. Neural circuitry of emotion regulation: effects of appraisal, attention, and cortisol administration. Cogn Affect Behav Neurosci. 2017;17:437-451.
DOI: 10.3758/s13415016-0489-1
-
26.
Dinan T.G., Cryan J.F. Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012;37:13691378.
DOI: 10.1016/j.psyneuen.2012.03.007
-
27.
Olofsson P.S., Rosas-Ballina M., Levine Y.A., Tracey K.J. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248:188-204.
DOI: 10.1111/j.1600-065X.2012.01138.x
-
28.
Sun J., Singh V., Kajino-Sakamoto R., Aballay A. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science. 2011;332:729732.
DOI: 10.1126/science.1203411
-
29.
Nathan C. Points of control in inflammation. Nature. 2002;420:846-852.
DOI: 10.1038/nature01320
-
30.
Chiu I.M., von Hehn C.A., Woolf C.J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15:10631067.
DOI: 10.1038/nn.3144
-
31.
Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595-638. PMID: 11121511
-
32.
Kipnis J., Cardon M., Avidan H., Lewitus G.M., Mordechay S., Rolls A., et al. Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: Implications for neurodegeneration. J Neurosci. 2004;24:6133-6143.
DOI: 10.1523/JNEUROSCI.0600-04.2004
-
33.
Prado C., Contreras F., Gonzalez H., Diaz P., Elgueta D., Barrientos M., et al. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol. 2012;188:3062-3070.
DOI: 10.4049/jimmunol.1103096
-
34.
Tracey K.J. The inflammatory reflex. Nature. 2002;420:853859.
DOI: 10.1038/nature01321
-
35.
Rosas-Ballina M., Olofsson P.S., Ochani M., ValdesFerrer S.I., Levine Y.A., Reardon C., et al. Acetylcholinesynthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98-101.
DOI: 10.1126/science.1209985
-
36.
Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599-609,609.e1-3.
DOI: 10.1053/j.gastro.2011.04.052
-
37.
Neufeld K.A., Foster J.A. Effects of gut microbiota on the brain: Implications for psychiatry. J Psychiatry Neurosci. 2009;34:230-231. PMID: 19448854
-
38.
Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28:203-209. PMID: 25830558
-
39.
Ogbonnaya E.S., Clarke G., Shanahan F., Dinan T.G., Cryan J.F., O’Leary O.F. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. 2015;78:e7e9.
DOI: 10.1016/j.biopsych.2014.12.023
-
40.
Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25:397-407.
DOI: 10.1016/j.bbi.2010.10.023
-
41.
Jia S., Lu Z., Gao Z., An J., Wu X., Li X., et al. Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-beta1-42-induced rat model of Alzheimer’s disease. Int J Biol Macromol. 2016;83:416-425.
DOI: 10.1016/j.ijbiomac.2015.11.011
-
42.
Chen C., Brown D.R., Xie Y., Green B.T., Lyte M. Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock. 2003;20:183-188.
DOI: 10.1097/01.shk.0000073867.66587.e0
-
43.
Freestone P.P., Williams P.H., Haigh R.D., Maggs A.F., Neal C.P., Lyte M. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock. 2002;18:465470.
DOI: 10.1097/00024382-200211000-00014
-
44.
O’malley D., Julio-Pieper M., Gibney S.M., Gosselin R.D., Dinan T.G., Cryan J.F. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat. Neurogastroenterol Motil. 2010;22:301311.
DOI: 10.1111/j.1365-2982.2009.01412.x
-
45.
Larauche M., Gourcerol G., Wang L., Pambukchian K., Brunnhuber S., Adelson D.W., et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physiol. 2009;297:G215-G227.
DOI: 10.1152/ajpgi.00072.2009
-
46.
Gareau M.G., Silva M.A., Perdue M.H. Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med. 2008;8:274-281.
DOI: 10.2174/156652408784533760
-
47.
Tache Y. Corticotropin releasing factor receptor antagonists: potential future therapy in gastroenterology? Gut. 2004;53:919-921.
DOI: 10.1136/gut.2003.036400
-
48.
Wu Y., Hu J., Zhang R., Zhou C., Xu Y., Guan X., et al. Enhanced intracellular calcium induced by urocortin is involved in degranulation of rat lung mast cells. Cell Physiol Biochem. 2008;21:173-182.
DOI: 10.1159/000113759
-
49.
Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305-312.
DOI: 10.1016/j.tins.2013.01.005
-
50.
Leonardo E.D., Hen R. Anxiety as a developmental disorder. Neuropsychopharmacology. 2008;33:134-140.
DOI: 10.1038/sj.npp.1301569
-
51.
Stein M.B., Seedat S., Gelernter J. Serotonin transporter gene promoter polymorphism predicts SSRI response in generalized social anxiety disorder. Psychopharmacology. 2006;187:68-72.
DOI: 10.1007/s00213-006-0349-8
-
52.
Gershon M.D., Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397-414.
DOI: 10.1053/j.gastro.2006.11.002
-
53.
Hoffman J.M., Tyler K., MacEachern S.J., Balemba O.B., Johnson A.C., Brooks E.M., et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology. 2012;142:844-854.e4.
DOI: 10.1053/j.gastro.2011.12.041
-
54.
Mawe G.M., Hoffman J.M. Serotonin signalling in the gut functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473-486.
DOI: 10.1038/nrgastro.2013.105
-
55.
Baganz N.L., Blakely R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2013;4:48-63.
DOI: 10.1021/cn300186b
-
56.
Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264276.
DOI: 10.1016/j.cell.2015.02.047
-
57.
Stasi C., Bellini M., Bassotti G., Blandizzi C., Milani S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol. 2014;18:613-621.
DOI: 10.1007/s10151-013-1106-8
-
58.
Forsythe P., Sudo N., Dinan T., Taylor V.H., Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24:916.
DOI: 10.1016/j.bbi.2009.05.058
-
59.
Gibson P.R., Newnham E., Barrett J.S., Shepherd S.J., Muir J.G. Review article: fructose malabsorption and the bigger picture. Aliment Pharmacol Ther. 2007;25:349363.
DOI: 10.1111/j.1365-2036.2006.03186.x
-
60.
Lundin A., Bok C.M., Aronsson L., Bjorkholm B., Gustafsson J.A., Pott S., et al. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol. 2008;10:10931103.
DOI: 10.1111/j.1462-5822.2007.01108.x
-
61.
Hosoi J., Murphy G.F., Egan C.L., Lerner E.A., Grabbe S., Asahina A., et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 1993;363:159-163.
DOI: 10.1038/363159a0
-
62.
Goehler L.E., Gaykema R.P., Nguyen K.T., Lee J.E., Tilders F.J., Maier S.F., et al. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci. 1999;19:27992806.
DOI: 10.1523/JNEUROSCI.19-07-02799.1999
-
63.
Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458-462.
DOI: 10.1038/35013070
-
64.
Ghia J.E., Blennerhassett P., Kumar-Ondiveeran H., Verdu E.F., Collins S.M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology. 2006;131:1122-1130.
DOI: 10.1053/j.gastro.2006.08.016
-
65.
Dai C., Zheng C.Q., Meng F.J., Zhou Z., Sang L.X., Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-kappaB pathway in rat model of DSS-induced colitis. Mol Cell Biochem. 2013;374:1-11.
DOI: 10.1007/s11010-012-1488-3
-
66.
Bambury A., Sandhu K., Cryan J.F., Dinan T.G. Finding the needle in the haystack: systematic identification of psychobiotics. Br J Pharmacol. 2018;175:4430-4438.
DOI: 10.1111/bph.14127
-
67.
Chu H., Mazmanian S.K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668-675.
DOI: 10.1038/ni.2635
-
68.
Takeda K., Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1-14.
DOI: 10.1093/intimm/dxh186
-
69.
Moussaoui N., Braniste V., Ait-Belgnaoui A., Gabanou M., Sekkal S., Olier M., et al. Changes in intestinal glucocorticoid sensitivity in early life shape the risk of epithelial barrier defect in maternal-deprived rats. PLoS One. 2014;9:e88382.
DOI: 10.1371/journal.pone.0088382
-
70.
Rhee S.H., Pothoulakis C., Mayer E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306-314.
DOI: 10.1038/nrgastro.2009.35
-
71.
Bercik P., Verdu E.F., Foster J.A., Macri J., Potter M., Huang X., et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139:21022112.e1.
DOI: 10.1053/j.gastro.2010.06.063
-
72.
Rea K., Dinan T.G., Cryan J.F. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23-33.
DOI: 10.1016/j.ynstr.2016.03.001
-
73.
McEwen B.S., Gray J.D., Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol. 2015;226:T67-T83.
DOI: 10.1530/JOE-150121
-
74.
Herman J.P., Ostrander M.M., Mueller N.K., Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:12011213.
DOI: 10.1016/j.pnpbp.2005.08.006
-
75.
De Voogd L.D., Klumpers F., Fernandez G., Hermans E.J. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress. Psychoneuroendocrinology. 2017;75:192-202.
DOI: 10.1016/j.psyneuen.2016.11.002
-
76.
Pagliaccio D., Luby J.L., Bogdan R., Agrawal A., Gaffrey M.S., Belden A.C., et al. Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology. 2014;39:1245-1253.
DOI: 10.1038/npp.2013.327
-
77.
Lupien S.J., McEwen B.S., Gunnar M.R., Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434-445.
DOI: 10.1038/nrn2639
-
78.
Montiel-Castro A.J., Gonzalez-Cervantes R.M., Bravo-Ruiseco G., Pacheco-Lopez G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013;7:70.
DOI: 10.3389/fnint.2013.00070
-
79.
Gareau M.G., Jury J., MacQueen G., Sherman P.M., Perdue M.H. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56:15221528.
DOI: 10.1136/gut.2006.117176
-
80.
Sarkar A., Lehto S.M., Harty S., Dinan T.G., Cryan J.F., Burnet P.W.J. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016;39:763-781.
DOI: 10.1016/j.tins.2016.09.002
-
81.
Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011;108:16050-16055.
DOI: 10.1073/pnas.1102999108
-
82.
Luczynski P., Whelan S.O., O’Sullivan C., Clarke G., Shanahan F., Dinan T.G., et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci. 2016;44:2654-2666.
DOI: 10.1111/ejn.13291
-
83.
Arentsen T., Raith H., Qian Y., Forssberg H., Diaz Heijtz R. Host microbiota modulates development of social preference in mice. Microb Ecol Health Dis. 2015;26:29719.
DOI: 10.3402/mehd.v26.29719
-
84.
Felix-Ortiz A.C., Tye K.M. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci. 2014;34:586-595.
DOI: 10.1523/JNEUROSCI.4257-13.2014
-
85.
Mayer E.A. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12:453-466.
DOI: 10.1038/nrn3071
-
86.
Cryan J.F., Kaupmann K. Don’t worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26:36-43.
DOI: 10.1016/j.tips.2004.11.004
-
87.
Higuchi T., Hayashi H., Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol. 1997;179:3362-3364.
DOI: 10.1128/jb.179.10.33623364.1997
-
88.
Amaral F.A., Sachs D., Costa V.V., Fagundes C.T., Cisalpino D., Cunha T.M., et al. Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci USA. 2008;105:2193-2197.
DOI: 10.1073/pnas.0711891105
-
89.
Gaboriau-Routhiau V., Rakotobe S., Lecuyer E., Mulder I., Lan A., Bridonneau C., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677-689.
DOI: 10.1016/j.immuni.2009.08.020
-
90.
Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485-498.
DOI: 10.1016/j.cell.2009.09.033
-
91.
Drevets W.C. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48:813-829.
DOI: 10.1016/S0006-3223(00)01020-9
-
92.
Barrett E., Ross R.P., O’Toole P.W., Fitzgerald G.F., Stanton C. Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113:411-417.
DOI: 10.1111/j.13652672.2012.05344.x
-
93.
Dinan T.G., Stilling R.M., Stanton C., Cryan J.F. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1-9.
DOI: 10.1016/j.jpsychires.2015.02.021
-
94.
Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays. 2011;33:574-581.
DOI: 10.1002/bies.201100024
-
95.
Gage F.H. Mammalian neural stem cells. Science. 2000;287:1433-1438.
DOI: 10.1126/science.287.5457.1433
-
96.
Zhao C., Deng W., Gage F.H. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645660.
DOI: 10.1016/j.cell.2008.01.033
-
97.
Villeda S.A., Luo J., Mosher K.I., Zou B., Britschgi M., Bieri G., et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90-94.
DOI: 10.1038/nature10357
-
98.
Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.N., et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263-275.
DOI: 10.1113/jphysiol.2004.063388
-
99.
Brown K., DeCoffe D., Molcan E., Gibson D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4:1095-1119.
DOI: 10.3390/nu4081095
-
100.
Cristofori F., Indrio F., Miniello V.L., De Angelis M., Francavilla R. Probiotics in celiac disease. Nutrients. 2018;10:1824.
DOI: 10.3390/nu10121824
-
101.
Ou G., Hedberg M., Horstedt P., Baranov V., Forsberg G., Drobni M., et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol. 2009;104:30583067.
DOI: 10.1038/ajg.2009.524
-
102.
Ansari F., Pourjafar H., Tabrizi A., Homayouni A. The effects of probiotics and prebiotics on mental disorders: a review on depression, anxiety, Alzheimer, and autism spectrum disorders. Curr Pharm Biotechnol. 2020;21(7):555565.
DOI: 10.2174/1389201021666200107113812
-
103.
Depression and other common mental disorders: global health estimates. World Health Organization. Geneva; World Health Organization; 2017. (WHO/MSD/MER/2017.2). Available at: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER2017.2-eng.pdf. Accessed April 2022.
-
104.
Marin I.A., Goertz J.E., Ren T., Rich S.S., Onengut-Gumuscu S., Farber E., et al. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep. 2017;7:43859.
DOI: 10.1038/srep43859
-
105.
Luan H., Wang X., Cai Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev. 2017;38:22-33.
DOI: 10.1002/mas.21553
-
106.
Yong S.J., Tong T., Chew J., Lim W.L. Antidepressive mechanisms of probiotics and their therapeutic potential. Front Neurosci. 2020;13:1361.
DOI: 10.3389/fnins.2019.01361
-
107.
Misra S., Mohanty D. Psychobiotics: a new approach for treating mental illness? Crit Rev Food Sci Nutr. 2019;59(8):1230-1236.
DOI: 10.1080/10408398.2017.1399860
-
108.
Akkasheh G., Kashani-Poor Z., Tajabadi-Ebrahimi M., Jafari P., Akbari H., Taghizadeh M., et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32(3):315-320.
DOI: 10.1016/j.nut.2015.09.003
-
109.
Chung Y.C., Jin H.M., Cui Y., Kim D.S., Jung J.M., Park J. Il, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J Funct Foods. 2014;10:465474.
DOI: 10.1016/j.jff.2014.07.007
-
110.
Colica C., Avolio E., Bollero P., Costa de Miranda R., Ferraro S., Sinibaldi Salimei P., et al. Evidences of a new psychobiotic formulation on body composition and anxiety. Mediators Inflamm. 2017;2017:5650627.
DOI: 10.1155/2017/5650627
-
111.
Ghorbani Z., Nazari S., Etesam F., Nourimajd S., Ahmadpanah M., Jahromi S.R. The effect of synbiotic as an adjuvant therapy to fluoxetine in moderate depression: a randomized multicenter trial. Arch Neurosci. 2018;5(2):e60507.
DOI: 10.5812/archneurosci.60507
-
112.
Kazemi A., Noorbala A.A., Azam K., Eskandari M.H., Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr. 2019;38(2):522-528.
DOI: 10.1016/j.clnu.2018.04.010
-
113.
Kouchaki E., Tamtaji O.R., Salami M., Bahmani F., Daneshvar Kakhaki R., Akbari E., et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2017;36(5):1245-1249.
DOI: 10.1016/j.clnu.2016.08.015
-
114.
Pinto-Sanchez M.I., Hall G.B., Ghajar K., Nardelli A., Bolino C., Lau J.T., et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology. 2017;153(2):448-459.e8.
DOI: 10.1053/j.gastro.2017.05.003
-
115.
Steenbergen L., Sellaro R., van Hemert S., Bosch J.A., Colzato L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258-264.
DOI: 10.1016/j.bbi.2015.04.003
-
116.
Yang H., Zhao X., Tang S., Huang H., Zhao X., Ning Z., et al. Probiotics reduce psychological stress in patients before laryngeal cancer surgery. Asia Pac J Clin Oncol. 2016;12(1):e92-e96.
DOI: 10.1111/ajco.12120
-
117.
Rudzki L., Ostrowska L., Pawlak D., Małus A., Pawlak K., Waszkiewicz N., et al. Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213-222.
DOI: 10.1016/j.psyneuen.2018.10.010
-
118.
Slykerman R.F., Hood F., Wickens K., Thompson J.M.D., Barthow C., Murphy R., et al. Probiotic in Pregnancy Study Group. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: a randomised double-blind placebo-controlled trial. EBioMedicine. 2017;24:159-165.
DOI: 10.1016/j.ebiom.2017.09.013
-
119.
Mohammadi A.A., Jazayeri S., Khosravi-Darani K., Solati Z., Mohammadpour N., Asemi Z., et al. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci. 2016;19(9):387395.
DOI: 10.1179/1476830515Y.0000000023
-
120.
Moludi J., Alizadeh M., Mohammadzad M.H.S., Davari M. The effect of probiotic supplementation on depressive symptoms and quality of life in patients after myocardial infarction: results of a preliminary double-blind clinical trial. Psychosom Med. 2019;81(9):770-777.
DOI: 10.1097/PSY.0000000000000749
-
121.
Moludi J., Khedmatgozar H., Saiedi S., Razmi H., Alizadeh M., Ebrahimi B. Probiotic supplementation improves clinical outcomes and quality of life indicators in patients with plaque psoriasis: a randomized double-blind clinical trial. Clin Nutr ESPEN. 2021;46:33-39.
DOI: 10.1016/j.clnesp.2021.09.004
-
122.
Tian P., Chen Y., Zhu H., Wang L., Qian X., Zou R., et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: a randomized clinical trial. Brain Behav Immun. 2022;100:233-241.
DOI: 10.1016/j.bbi.2021.11.023
-
123.
Nadeem I., Rahman M.Z., Ad-Dab'bagh Y., Akhtar M. Effect of probiotic interventions on depressive symptoms: a narrative review evaluating systematic reviews. Psychiatry Clin Neurosci. 2019;73(4):154-162.
DOI: 10.1111/pcn.12804
-
124.
Liu R.T., Walsh R.F.L., Sheehan A.E. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102:13-23.
DOI: 10.1016/j.neubiorev.2019.03.023
-
125.
Hofmeister M., Clement F., Patten S., Li J., Dowsett L.E., Farket B., et al. The effect of interventions targeting gut microbiota on depressive symptoms: a systematic review and meta-analysis. CMAJ Open. 2021;9(4):E1195-E1204.
DOI: 10.9778/cmajo.20200283
-
126.
Mirashrafi S., Hejazi Taghanaki S.Z., Sarlak F., Moravejolahkami A.R., Hojjati Kermani M.A., Haratian M., et al. Effect of probiotics supplementation on disease progression, depression, general health, and anthropometric measurements in relapsing-remitting multiple sclerosis patients: a systematic review and meta-analysis of clinical trials. Int J Clin Pract. 2021;75(11):e14724.
DOI: 10.1111/ijcp.14724
-
127.
Kato-Kataoka A., Nishida K., Takada M., Suda K., Kawai M., Shimizu K., et al. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes. 2016;7(2):153-156.
DOI: 10.3920/BM2015.0100
-
128.
Allen A.P., Hutch W., Borre Y.E., Kennedy P.J., Temko A., Boylan G., et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry. 2016;6(11):e939.
DOI: 10.1038/tp.2016.191.e939-e939
-
129.
Sawada D., Kuwano Y., Tanaka H., Hara S., Uchiyama Y., Sugawara T., et al. Daily intake of Lactobacillus gasseri CP2305 relieves fatigue and stress-related symptoms in male university ekiden runners: a double-blind, randomized, and placebo-controlled clinical trial. J Funct Foods. 2019;57:465-476.
DOI: 10.1016/j.jff.2019.04.022
-
130.
Nishida K., Sawada D., Kuwano Y., Tanaka H., Rokutan K. Health benefits of Lactobacillus gasseri CP2305 tablets in young adults exposed to chronic stress: a randomized, double-blind, placebo-controlled study. Nutrients. 2019;11(8):1859.
DOI: 10.3390/nu11081859
-
131.
Roman P., Carrillo-Trabalón F., Sánchez-Labraca N., Cañadas F., Estévez A.F., Cardona D. Are probiotic treatments useful on fibromyalgia syndrome or chronic fatigue syndrome patients? A systematic review. Benef Microbes. 2018;9(4):603-611.
DOI: 10.3920/BM2017.0125
-
132.
Fond G., Boukouaci W., Chevalier G., Regnault A., Eberl G., Hamdani N., et al. The «psychomicrobiotic»: targeting microbiota in major psychiatric disorders. A systematic review. Pathol Biol (Paris). 2015;63:35-42.
DOI: 10.1016/j.patbio.2014.10.003
-
133.
Wang Y., Kasper L.H. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:112.
DOI: 10.1016/j.bbi.2013.12.015
-
134.
Santocchi E., Guiducci L., Fulceri F., Billeci L., Buzzigoli E., Apicella F., et al. Gut to brain interaction in autism spectrum disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016;16(1):183.
DOI: 10.1186/s12888-016-0887-5
-
135.
Wakefield A.J., Puleston J.M., Montgomery S.M., Anthony A., O'Leary J.J., Murch S.H. Review article: the concept of entero-colonic encephalopathy, autism and opioid receptor ligands. Aliment Pharmacol Ther. 2002;16(4):663674.
DOI: 10.1046/j.1365-2036.2002.01206.x
-
136.
Bolte E.R. Autism and Clostridium tetani. Med Hypotheses. 1998;51:133-144.
DOI: 10.1016/s03069877(98)90107-4
-
137.
Sandler R.H., Finegold S.M., Bolte E.R., Buchanan C.P., Maxwell A.P., Väisänen M.L., et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol. 2000;15:429-435.
DOI: 10.1177/088307380001500701
-
138.
Finegold S.M., Molitoris D., Song Y., Liu C., Vaisanen M.L., Bolte E., et al. Gastrointestinal microflora studies in ate-onset autism. Clin Infect Dis. 2002;35:S6-S16.
DOI: 10.1086/341914
-
139.
Song Y., Liu C., Finegold S.M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459-6465.
DOI: 10.1128/AEM.70.11.6459-6465.2004
-
140.
Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54:987-991.
DOI: 10.1099/jmm.0.46101-0
-
141.
Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444-453.
DOI: 10.1016/j.anaerobe.2010.06.008
-
142.
De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6(3):207-213.
DOI: 10.1080/19490976.2015.1035855
-
143.
Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal flora and gastrointestinal status in children with autism – comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22.
DOI: 10.1186/1471-230X-11-22
-
144.
Kang D.W., Park J.G., Ilhan Z.E., Wallstrom G., Labaer J., Adams J.B., et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8:e68322.
DOI: 10.1371/journal.pone.0068322
-
145.
Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism. 2013;4:42.
DOI: 10.1186/2040-2392-4-42
-
146.
Williams B.L., Hornig M., Parekh T., Lipkin W.I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio. 2012;3:pii: e0026111.
DOI: 10.1128/mBio.00261-11
-
147.
Iglesias-Vázquez L., Van Ginkel Riba G., Arija V., Canals J. Composition of gut microbiota in children with autism spectrum disorder: a systematic review and meta-analysis. Nutrients. 2020;12(3):792.
DOI: 10.3390/nu12030792
-
148.
Martin C.R., Osadchiy V., Kalani A., Mayer E.A. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133-148.
DOI: 10.1016/j.jcmgh.2018.04.003
-
149.
Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder. Int J Environ Res Public Health. 2020;17(8):2647.
DOI: 10.3390/ijerph17082647
-
150.
MacFabe D.F. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: Implications in autism spectrum disorders. Microb Ecol Health Dis. 2015;26:28177.
DOI: 10.3402/mehd.v26.28177
-
151.
Altieri L., Neri C., Sacco R., Curatolo P., Benvenuto A., Muratori F., et al. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers. 2011;16(3):252-260.
DOI: 10.3109/1354750X.2010.548010
-
152.
Parracho H.M.R.T., Gibson G.R., Knott F., Bosscher D., Kleerebezem M., McCartney A.L. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int J Probiotics Prebiotics. 2010;5:69-74.
-
153.
Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179187.
DOI: 10.1016/j.physbeh.2014.10.033
-
154.
Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Seno_ usy W.M., El-Feki H.S.A., Saad K., et al. The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci. 2018;21(9):676-681.
DOI: 10.1080/1028415X.2017.1347746
-
155.
Liu Y.W., Liong M.T., Chung Y.E., Huang H.Y., Peng W.S., Cheng Y.F., et al. Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial. Nutrients. 2019;11(4):820.
DOI: 10.3390/nu11040820
-
156.
Santocchi E., Guiducci L., Prosperi M., Calderoni S., Gaggini M., Apicella F., et al. Effects of probiotic supplementation on gastrointestinal, sensory and core symptoms in autism spectrum disorders: a randomized controlled trial. Front Psychiatry. 2020;11:550593.
DOI: 10.3389/fpsyt.2020.550593
-
157.
Nimgampalle M., Kuna Y. Anti-Alzheimer properties of probiotic Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J Clin Diagn Res. 2017;11(8):KC01-KC05.
DOI: 10.7860/JCDR/2017/26106.10428
-
158.
Leszek J., Barreto G.E., Gąsiorowski K., Koutsouraki E., ÁvilaRodrigues M., Aliev G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets. 2016;15(3):329-336.
DOI: 10.2174/1871527315666160202125914
-
159.
Lei M., Hua X., Xiao M., Ding J., Han Q., Hu G. Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochem Biophys. 2008;369(4):1082-1087.
DOI: 10.1016/j.bbrc.2008.02.151
-
160.
Marizzoni M., Cattaneo A., Mirabelli P., Festari C., Lopizzo N., Nicolosi V., et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease. J Alzheimers Dis. 2020;78(2):683-697.
DOI: 10.3233/JAD-200306
-
161.
Jung I.H., Jung M.A., Kim E.J., Han M.J., Kim D.H. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J Appl Microbiol. 2012;113(6):1498-1506.
DOI: 10.1111/j.13652672.2012.05437.x
-
162.
Woo J-Y., Gu W., Kim K-A., Jang S-E., Han M.J., Kim D-H. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe. 2014;27:22-26.
DOI: 10.1016/j.anaerobe.2014.03.003
-
163.
Peng X., Meng J., Chi T., Liu P., Man C., Liu S., et al. Lactobacillus plantarum NDC 75017 alleviates the learning and memory ability in aging rats by reducing mitochondrial dysfunction. Exp Ther Med. 2014;8(6):1841-1846.
DOI: 10.3892/etm.2014.2000
-
164.
Mallikarjuna N., Praveen K., Yellamma K. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain. Bioimpacts. 2016;6(4):203-209.
DOI: 10.15171/bi.2016.27
-
165.
Kobayashi Y., Sugahara H., Shimada K., Mitsuyama E., Kuhara T., Yasuoka A., et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci Rep. 2017;7(1):13510.
DOI: 10.1038/s41598-01713368-2
-
166.
Kobayashi Y., Kinoshita T., Matsumoto A., Yoshino K., Saito I., Xiao J.Z. Bifidobacterium breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label, single-arm study. J Prev Alzheimers Dis. 2019;6(1):70-75.
DOI: 10.14283/jpad.2018.32
-
167.
Kobayashi Y., Kuhara T., Oki M., Xiao J.Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes. 2019;10(5):511-520.
DOI: 10.3920/BM2018.0170
-
168.
Tamtaji O.R., Heidari-Soureshjani R., Mirhosseini N., Kouchaki E., Bahmani F., Aghadavod E., et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: a randomized, double-blind, controlled trial. Clin Nutr. 2019;38(6):2569-2575.
DOI: 10.1016/j.clnu.2018.11.034
-
169.
Kim C.S., Cha L., Sim M., Jung S., Chun W.Y., Baik H.W., et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci. 2021;76(1):32-40.
DOI: 10.1093/gerona/glaa090
-
170.
Akbari E., Asemi Z., Daneshvar Kakhaki R., Bahmani F., Kouchaki E., Tamtaji O.R., et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016;8:256.
DOI: 10.3389/fnagi.2016.00256
-
171.
Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Gut microbiota and pro/prebiotics in Alzheimer's disease. Aging (Albany NY). 2020;12(6):5539-5550.
DOI: 10.18632/aging.102930
-
172.
Rajkumar R.P. COVID-19 and mental health: a review of the existing literature. Asian J Psychiatr. 2020;52:102066.
DOI: 10.1016/j.ajp.2020.102066
-
173.
Roy D., Tripathy S., Kar S.K., Sharma N., Verma S.K., Kaushal V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J Psychiatr. 2020;51:102083.
DOI: 10.1016/j.ajp.2020.102083
-
174.
Shabbir M.A., Mehak F., Khan Z.M., Ahmed W., Haq S., et al. Delving the role of nutritional psychiatry to mitigate the COVID-19 pandemic induced stress, anxiety and depression. Trends Food Sci Technol. 2022;120:25-35.
DOI: 10.1016/j.tifs.2021.12.035
-
175.
Nwachukwu I., Nkire N., Shalaby R., Hrabok M., Vuong W., Gusnowski A., et al. COVID-19 pandemic: age-related differences in measures of stress, anxiety and depression in Canada. Int J Environ Res Public Health. 2020;17(17):6366.
DOI: 10.3390/ijerph17176366
-
176.
Ahmed M.Z., Ahmed O., Aibao Z., Hanbin S., Siyu L., Ahmad A. Epidemic of COVID-19 in China and associated psychological problems. Asian J Psychiatr. 2020;51:102092.
DOI: 10.1016/j.ajp.2020.102092
-
177.
Brooks S.K., Webster R.K., Smith L.E., Woodland L., Wessely S., Greenberg N., et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912-920.
DOI: 10.1016/S0140-6736(20)30460-8
-
178.
Röhr S., Müller F., Jung F., Apfelbacher C., Seidler A., Riedel-Heller S.G. Psychosocial impact of quarantine measures during serious coronavirus outbreaks: a rapid review. Psychiatrische Praxis. 2020;47(4):179-189.
DOI: 10.1055/a-1159-5562
-
179.
de Araújo F.F., Farias D.P. Psychobiotics: an emerging alternative to ensure mental health amid the COVID-19 outbreak? Trends Food Sci Technol. 2020;103:386-387.
DOI: 10.1016/j.tifs.2020.07.006
-
180.
Bhuvaneswar C.G., Baldessarini R.J., Harsh V.L., Alpert J.E. Adverse endocrine and metabolic effects of psychotropic drugs: selective clinical review. CNS Drugs. 2009;23:1003-1021.
DOI: 10.2165/11530020000000000-00000
-
181.
Cussotto S., Strain C.R., Fouhy F., Strain R.G., Peterson V.L., Clarke G., et al. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology. 2019;236(5):1671-1685.
DOI: 10.1007/s00213-018-5006-5
-
182.
Sharifi-Rad J., Rodrigues C.F., Stojanović-Radić Z., Dimitrijević M., Aleksić A., Neffe-Skocińska K., et al. Probiotics: versatile bioactive components in promoting human health. Medicina (Kaunas). 2020;56(9):433.
DOI: 10.3390/medicina56090433