Abstract
The analysis of the current state of antimicrobial resistance was performed and used as the basis for the implementation of modern tools of antimicrobial stewardship program in hospital practice. As a result, the structure of nosocomial pathogens and the prevalence of resistant isolates in a hospital were affected. Antibiotic consumption and economic burden of antimicrobial resistance have decreased, and treatment quality indicators for nosocomial infections have changed.
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
Pirogov National Medical and Surgical Center, Moscow, Russia
-
1.
Bhullar K., Waglechner N., Pawlowski A., Koteva K., Banks E.D., Johnston M.D., et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012;7(4):e34953.
DOI: 10.1371/journal.pone.0034953
-
2.
Grünewald H. Nobel Lectures, the Physiology or Medicine 1942-1962, Amsterdam: Elsevier Publishing Company; 1964, 938 р.
DOI: 10.1002/ange.19650771433
-
3.
WHO Executive Board, 134 session. Combating antimicrobial resistance, including antibiotic resistance. 2014. Available at: https://apps.who.int/iris/handle/10665/173018/. Accessed September 2020.
-
4.
Yox S., Scudder L. Too many antibiotics! Patients and prescribers speak up. 2014. Available at: www.medscape. com/features/slideshow/public/antibiotic-misuse#7. Accessed September 2020.
-
5.
Rezal R.S., Hassali M.A., Alrasheedy A.A., Saleem F., Yusof F.A., Godman B. Physicians’ knowledge, perceptions and behaviour towards antibiotic prescribing: a systematic review of the literature. Expert Rev Anti Infect Ther. 2015;13(5):665-680.
DOI: 10.1586/14787210.2015.1025057
-
6.
Ocan M., Obuku E.A., Bwanga F., Akena D., Richard S., Ogwal-Okeng J., et al. Household antimicrobial selfmedication: a systematic review and meta-analysis of the burden, risk factors and outcomes in developing countries. BMC Public Health. 2015;15(1):742.
DOI: 10.1186/s12889-015-2109-3
-
7.
Rudnov V.A., Kolotova G.B., Bagin V.A., Nevskaya N.N., Belsky D.V., Ivanova N.A., et al. The role of antimicrobial therapy stewardship in intensive care service. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2018;20(2):132-140. Russian.
DOI: 10.36488/cmac.2018.2.132-140
-
8.
CDC. Guidance for control of infections with carbapenemresistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep. 2009;58(10):256-260. PMID: 19300408.
-
9.
Tacconelli E., Cataldo M.A., Dancer S.J., De Angelis G., Falcone M., Frank U., et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20(1):155.
DOI: 10.1111/1469-0691.12427
-
10.
WHO: Implementation manual to prevent and control the spread of carbapenem-resistant organisms at the national and health care facility level: interim practical manual supporting implementation of the guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. Geneva: World Health Organization. 2019. Available at: https://apps.who.int/iris/handle/10665/312226/. Accessed September 2020.
-
11.
Chia P.Y., Sengupta S., Kukreja A., Ponnampalavanar S., Ng O.T., Marimuthuet K. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob Resist Infect Control. 2020;9(1):29.
DOI: 10.1186/s13756-020-0685-1
-
12.
Belkova Y.A., Rachina S.А., Kozlov R.S., Mischenko V.М., Pavlukov R.A., Kozlov S.N., et al. Systemic antimicrobials consumption and expenditures in intensive care units of hospitals in Russian Federation and Republic of Belarus: results of multicenter pharmacoepidemiological study. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2014;16(4):294-311. Russian.
-
13.
O’Neill J. Antimicrobial Resistance: tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance Chaired by Jim O’Neill December 2014. Available at: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed September 2020.
-
14.
Stewardson A.J., Marimuthu K., Sengupta S., Allignol A., El-Bouseary M., Carvalho M.J., et al. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): a multinational prospective cohort study. Lancet Infect Dis. 2019;19(6):601-610.
DOI: 10.1016/S1473-3099(18)30792-8
-
15.
De Kraker M.E.A., Wolkewitz M., Davey P.G., Koller W., Berger J., Nagler J., et al. and BURDEN Study Group. Clinical impact of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother. 2011;55(4):1598-1605.
DOI: 10.1128/AAC.01157-10
-
16.
Goldstein E., MacFadden D.R., Karaca Z., Steiner C.A., Viboud C., Lipsitch M. Antimicrobial resistance prevalence, rates of hospitalization with septicemia and rates of mortality with sepsis in adults in different US states. Int J Antimicrob Agents. 2019;54(1):23-34.
DOI: 10.1016/j.ijantimicag.2019.03.004
-
17.
Peters L., Olson L., Khu D., Linnros S., Le N.K., Hanberger H., et al. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospitalacquired infections caused by gram-negative bacteria in Vietnam. PLoS One. 2019;14(5):e0215666.
DOI: 10.1371/journal.pone.0215666
-
18.
Barrasa-Villar J.I., Aibar-Remón C., Prieto-Andrés P., MarecaDoñate R., Moliner-Lahoz J. Impact on morbidity, mortality, and length of stay of hospital-acquired infections by resistant microorganisms. Clin Infect Dis. 2017;65(4):644652.
DOI: 10.1093/cid/cix411
-
19.
Cosgrove S.E. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42(2):S8289.
DOI: 10.1086/499406
-
20.
Nathwani D., Raman G., Sulham K., Gavaghan M., Menon V. Clinical and economic consequences of hospitalacquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and metaanalysis. Antimicrob Resist Infect Control. 2014;3(1):32.
DOI: 10.1186/2047-2994-3-32
-
21.
Tabak Y.P., Sung A.H., Ye G., Vankeepuram L., Gupta V., McCann E. Attributable clinical and economic burden of carbapenem-non-susceptible Gram-negative infections in patients hospitalized with complicated urinary tract infections. J Hosp Infect. 2019;102(1):37-44.
DOI: 10.1016/j.jhin.2018.11.018
-
22.
Giraldi G., Montesano M., Napoli C., Frati P., La Russa R., Santurro A., et al. Healthcare-associated infections due to multidrug-resistant organisms: a surveillance study on extra hospital stay and direct costs. Curr Pharm Biotechnol. 2019;20(8):643-652.
DOI: 10.2174/1389201020666190408095811
-
23.
Lautenbach E., Patel J.B., Bilker W.B., Patel J.B., Edelstein P.H., Fishmanet N.O. Extended-spectrum betalactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):11621171.
DOI: 10.1086/319757
-
24.
Paterson D.L., Ko W.C., Von Gottberg A., Mohapatra S., Casellas J.M., Goossens H., et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med. 2004;140(1):2632.
DOI: 10.7326/0003-4819-140-1-20040106000008
-
25.
Obeid A., Maliha P., Abdallah S., Akl E., Deeb M., El Moussawi H., et al. ESBL-producing Escherichia coli and Klebsiella pneumoniae in two major Lebanese hospitals: molecular epidemiology and correlation with consumption. J Infect Dev Ctries. 2018;12(2.1):16S.
DOI: 10.3855/jidc.10038
-
26.
Kozlov R.S. Selection of resistance associated with the use of antimicrobial agents: collateral damage concept. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2010;12(14):284294. Russian.
-
27.
Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V. Shajdullina E.R., Azyzov I.S., et al. Antimicrobial resistance of nosocomial Enterobacteriaceae isolates in Russia: results of multicenter epidemiological study “MARATHON” 2015-2016. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2019;21(2):147159. Russian.
DOI: 10.36488/cmac.2019.2.147-159
-
28.
Qu X., Wang H., Chen C., Tao Z., Yin C., Yin A., et al. Surveillance of carbapenem-resistant Klebsiella pneumoniae in Chinese hospitals – A five-year retrospective study. J Infect Dev Ctries. 2019;13(12):1101-1107.
DOI: 10.3855/jidc.11798
-
29.
Peñalva G., Högberg L.D., Weist K., Vlahović-Palčevski V., Heuer O., Monnet D.L., ESAC-Net study group and EARSNet study group. Decreasing and stabilising trends of antimicrobial consumption and resistance in Escherichia coli and Klebsiella pneumoniae in segmented regression analysis, European Union/European Economic Area, 2001 to 2018. Euro Surveill. 2019;24(46):1900656.
DOI: 10.2807/1560-7917.ES.2019.24.46.1900656
-
30.
Arepyeva M.A., Kolbin A.S., Sidorenko S.V., Lawson R., Kurylev A.A., Balykina Yu.E., et al. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption. J Glob Antimicrob Resist. 2017;8:148-156.
DOI: 10.1016/j.jgar.2016.11.010
-
31.
Arepyeva M.A., Kolbin A.S., Sidorenko S.V., Kurylev A.A., Balykina Yu.E., Mukhina N.V., et al. Prognostic model of microbial resistance based on the relationship between antibiotic resistance and consumption. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2016;18(3):200-211. Russian.
-
32.
Gomon Yu.M., Arepyeva M.A., Balykina Yu.E., Kolbin A.S., Kurylev A.A., Proskurin M.A., et al. Modeling microbial drug-resistance: from mathematics to pharmacoeconomics. Farmakojekonomika. Sovremennaja farmakojekonomika i farmakojepidemiologija. 2018;11(1):27-36. Russian.
DOI: 10.17749/2070-4909.2018.11.1.027-036
-
33.
Berger P., Pascal L., Sartor C., Delorme J., Monge P., Ragon C.P., et al. Generalized additive model demonstrates fluoroquinolone use/resistance relationships for Staphylococcus aureus. Eur J Epidemiol. 2004;19(5):453460.
DOI: 10.1023/b:ejep.0000027348.92979.94
-
34.
D’Agata E., Webb G., Horn M. A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycinresistant enterococci. J Infect Dis. 2005;192(11):20042011.
DOI: 10.1086/498041
-
35.
Aldrin M., Raastad R., Tvete I.F., Berild D., Frigessi A., Leegaard T., et al. Antibiotic resistance in hospitals: a ward-specific random effect model in a low antibiotic consumption environment. Stat Med. 2013;32(8):14071418.
DOI: 10.1002/sim.5636
-
36.
Sun L., Klein E.Y., Laxminarayan R. Seasonality and temporal correlation between community antibiotic use and resistance in the United States. Clin Infect Dis. 2012;55(5):687-694.
DOI: 10.1093/cid/cis509
-
37.
McGowan J.E. Jr, Gerding D.N. Does antibiotic restriction prevent resistance? New Horiz. 1996;4(3):370-376. PMID: 8856755
-
38.
Dellit T.H., Owens R.C., McGowan J.E. Jr, Gerding D.N., Weinstein R.A., Burke J.P., et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159-177.
DOI: 10.1086/510393
-
39.
Barlam T.F., Cosgrove S.E., Abbo L.M., MacDougall C., Schuetz A.N., Septimus E.J., et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51-e77.
DOI: 10.1093/cid/ciw118
-
40.
CDC. Core elements of hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC. 2019. Available at: www.cdc. gov/antibiotic-use/core-elements/hospital.html. Accessed September 2020.
-
41.
WHO. Antimicrobial stewardship programmes in healthcare facilities in low- and middle-income countries: a WHO practical toolkit. Geneva: World Health Organization. 2019. Available at: https://apps.who.int/iris/handle/10665/329404/. Accessed September 2020.
-
42.
Savelyev V.S., Gelfand B.R., Yakovlev S.V. Strategy and guidelines of the use of antimicrobial agents in medical institutions of Russia. Russian national recommendations. M.: Borges; 2012. 94 p. Russian.
-
43.
Yakovlev S.V., Briko N.I., Sidorenko S.V., Protsenko D.N. AMS strategy (Antimicrobial Stewardship Strategy) in the provision of inpatient medical care. Russian clinical recommendations. M.: Pero; 2018. 156 p. Russian.
-
44.
Morris A.M. Antimicrobial Stewardship Programs: appropriate measures and metrics to study their impact. Curr Treat Options Infect Dis. 2014;6(2):101-112.
DOI: 10.1007/s40506-014-0015-3