Potentiation of antimicrobial activity of colistin with antibiotics of different groups against multidrug- and extensively drug-resistant strains of Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa | CMAC

Potentiation of antimicrobial activity of colistin with antibiotics of different groups against multidrug- and extensively drug-resistant strains of Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa

Clinical Microbiology and Antimicrobial Chemotherapy. 2020; 22(2):128-136

Section
Type
Original Article

Objective.

To reveal antibiotics being capable of potentiating the antimicrobial activity of colistin against multidrug- and extensively drug-resistant strains of Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa.

Materials and Methods.

The minimum inhibitory concentrations (MIC) of colistin alone and in combination with fixed concentrations of antibiotics of different groups were determined for 272 multidrug- and extensively drug-resistant strains of K. pneumoniae, A. baumannii and P. aeruginosa. Bactericidal activity of colistin, carbapenems, clarithromycin and their combinations were also determined at fixed PK/PD breakpoint concentrations of antibiotics.

Results.

Potentiation of colistin antibacterial activity in the presence of fixed concentration of rifampicin (0.5 mg/L) was observed as a 4–16-fold MIC decrease for K. pneumoniae and A. baumannii. In the presence of fixed concentrations of azithromycin (2 mg/L) or clarithromycin (1 mg/L), the colistin MICs decreased 64–512 times for K. pneumoniae, 4–32 times for A. baumannii, 16–64 times for P. aeruginosa. Two- or more-fold reduction of MIC of colistin in the presence of 1 mg/L clarithromycin was observed for 85.2% of K. pneumoniae, 86.3% of A. baumannii and 60.2% of P. aeruginosa strains. In the presence of 1 mg/L clarithromycin and 8 mg/L meropenem, the potentiation effect was enhanced and was observed for an even larger percent of isolates: 96.1% K. pneumoniae, 98.0% A. baumannii and 61.3% P. aeruginosa. Colistin-based combinations with clarithromycin-meropenem and clarithromycin-doripenem were bactericidal against most isolates of A. baumannii and P. aeruginosa (91.4–100%), and against colistin-sensitive K. pneumoniae (95.3%) and colistin-resistant K. pneumoniae (79.1%).

Conclusions.

The ability of macrolides to significantly potentiate the colistin antimicrobial activity against both colistin-sensitive and colistin-resistant strains of K. pneumoniae, A. baumannii and P. aeruginosa was shown. This potentiation effect was enhanced in the presence of carbapenems. The most potent bactericidal activity was revealed with dual and triple combinations of colistin-clarithromycin and colistinclarithromycin-carbapenems.

Views
0 Abstract
0 PDF
0 Crossref citations
Shared