Abstract
Susceptibility to antibiotics was determined for 208 hospital isolates from 4 regions of Belarus. The broad abundance of resistance to carbapenems was shown. The genes of carbapenemases blaNDM, blaOXA-48 and blaKPC were detected in 55 strains from 12 multifield hospitals in 4 cities. The reduced velocity of exponential growth and low competitive ability were revealed in carbapenemase-producing isolates in comparison to drug susceptible strains of K. pneumoniae.
Gomel State Medical University, Gomel, Belarus
Gomel State Medical University, Gomel, Belarus
Institute of Radiobiology of the National Academy of Sciences of Belarus, Gomel, Belarus
-
1.
Nordmann P., Naas T., Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791-1798.
-
2.
Tapal’skij D.V., Osipov V.A., Zhavoronok S.V. Carbapenemases of gramnegative bacteria: distribution and methods of detection. Medicinskij zhurnal. 2012;2:10-15. Russian.
-
3.
Pitout J.D.D., Nordmann P., Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59:5873-5884.
-
4.
Gupta N., Limbago B.M., Patel J.B., Kallen A.J. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:60-67.
-
5.
Chen L., Mathema B., Chavda K.D., et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22:686-696.
-
6.
Neidell M.J., Cohen B., Furuya Y., et al. Costs of healthcare- and communityassociated infections with antimicrobial-resistant versus antimicrobialsusceptible organisms. Clin Infect Dis. 2012;55:807-815.
-
7.
Hamprecht A., Gottig S. Treatment of infections caused by carbapenemresistant Enterobacteriaceae. Curr Treat Options Infect Dis. 2014;6:425-438.
-
8.
Dautzenberg M.J., Wekesa A.N., Gniadkowski M., et al. The association between colonization with carbapenemase-producing enterobacteriaceae and overall ICU mortality: an observational cohort study. Crit Care Med. 2015;43:1170-1177.
-
9.
Woodford N., Turton J.F., Livermore D.M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35:736-755.
-
10.
Potron A., Poirel L., Rondinaud E., Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 20
-
11.
Euro Surveill. 2013;18(31). 11. Bialek-Davenet S., Criscuolo A., Ailloud F., et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis. 2014;20:1812-1820.
-
12.
Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;15:107-118.
-
13.
Andersson D.I., Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260-271.
-
14.
Vogwill T., MacLean R.C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl. 2015;8:284-295.
-
15.
Hennequin C., Robin F. Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis. 2016;35:333-341.
-
16.
Pages J.-M., James C.E., Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6:893-903.
-
17.
Adler M., Anjum M., Andersson D.I., Sandegren L. Influence of acquired b-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J Antimicrob Chemother. 2013;68:51-59.
-
18.
Lee C.R., Lee J.H., Park K.S., et al. Global dissemination of carbapenemaseproducing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.
-
19.
Gottig S., Riedel-Christ S., Saleh A., et al. Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents. 2016;47:430-435.
-
20.
Di Luca M.C., Sorum V., Starikova I., et al. Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. J Antimicrob Chemother. 2017;72:85-89.
-
21.
Cordeiro N.F., Chabalgoity J.A., Yim L., Vignoli R. Synthesis of metallo-βlactamase VIM-2 is associated with a fitness reduction in Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother. 2014;58:6528-6535.
-
22.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. Available at: http://www.eucast.org.
-
23.
Jung P.P., Christian N., Kay D., et al. Protocols and programs for high-throughput growth and aging phenotyping in yeast. PLoS ONE. 2015;10(3):e0119807.
-
24.
Lenski R.E., Simpson S.C., Nguyen T.T. Genetic analysis of a plasmidencoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol. 1994;176:3140-3147.
-
25.
Centers for Disease Control and Prevention. Guidance for control of carbapenem-resistant Enterobacteriaceae (CRE). 2012. Available at: http://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf (accessed 06 March 2017).
-
26.
Tacconelli E., Cataldo M.A., Dancer S.J., et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20(Suppl. 1):1-55.