Abstract
Acquired bacterial resistance is one of the leading causes of morbidity and mortality attributed to infectious diseases. Simulations may provide opportunity to predict further spread of resistance and, to some extent, manage it. The objective of this study was to construct a model describing relationship between microbial resistance and antibiotic consumption. At the first step, an analysis of the published models developed to achieve this goal was performed. At the second step, a cross-sectional, retrospective study was designed and performed to collect clinical and microbiological data for constructing this model. At the third step, the model was constructed and validated. A consumption of different antibiotic classes was shown to have a significant effect on resistance rate. The model may help in predicting antimicrobial resistance trends as well as demonstrates the effect of antibiotic consumption on resistance rates.
Saint-Petersburg State University, Saint-Petersburg, Russia
Saint-Petersburg State University, Saint-Petersburg, Russia
Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
Research Institute of Children’s Infectious Diseases, Saint-Petersburg, Russia
Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
Saint-Petersburg State University, Saint-Petersburg, Russia
Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
-
1.
Колбин А.С., Сидоренко С.В., Балыкина Ю.Е. Социально-экономические ас-пекты приобретенной бактериальной резистентности. Клиническая фармакология и терапия 2010; 19(5):16-2
-
2.
Aldrin M., Raastad R., Tvete I.F., et al. Antibiotic resistance in hospitals: a ward-specific random effect model in a low antibiotic consumption environment. Stat Med 2013; 32(8):1407-18.
-
3.
Alawieh A., Sabra Z., Bizri A.R., et al. A computational model to monitor and predict trends in bacterial resistance. J Global Antimicrobial Resistance 2010, http://dx.doi.org/10.1016/j.jgar.2015.04.006.
-
4.
Арепьева М.А., Прасолов А.В., Свиркин М.В., Колосовская Е.Н., Дарьина М.Г., Соусова Е.В., Кафтырева Л.А., Пургина Е.Р., Петрова Е.А., Сидоренко C.В., Колбин А.С. Математическая модель расчета приобретенной антибиотикорезистентности. Вестник СПбГУ 2011; Серия 11 (Выпуск 2):101-14.
-
5.
Arepeva M., Kolbin A., Balykina Y., Kurilev A., Sidorenko S. What should be considered if you decide to build your mathematical model for predicting the development of bacterial resistance? Recommendations based on a systematic review of the literature. Frontiers in Microbiology 2015; 6:352.
-
6.
Арепьева М.А., Колбин А.С., Курылев А.А., Балыкина Ю.Е., Сидоренко С.В. Систематический обзор математических моделей, применяемых для прогнозирования развития резистентности бактерий к антибиотикам. Клин микробиол антимикроб химиотер 2014; 16(2):137-43.
-
7.
Berger P., Pascal L., Sartor C., et al. Generalized additive model demonstrates fluoroquinolone use/resistance relationships for Staphylococcus aureus. Eur J Epidemiol 2004; 19(5):453-60.
-
8.
http://www.who.int/medicines/areas/quality_safety/ safety_efficacy/utilization/en/
-
9.
Brown E.M., Nathwani В. Antibiotic cycling or rotation: a systematic review of the evidence of efficacy. J Antimicrob Chemother 2005; 55(1): 6-9.