Abstract
Pseudomonas aeruginosa is the most abundant bacterial species causing nosocomial infections in Russia. In this paper, we report the data on antimicrobial susceptibility of 343 isolates of P. aeruginosa collected in 25 hospitals of 18 cities of Russia in 2011–2012 as part of the national multicenter surveillance study on antimicrobial resistance of nosocomial pathogens, «MARATHON». P. aeruginosa isolates comprised 20.2% of all bacterial nosocomial isolates. Among them, the non-susceptibility rates to main antipseudomonal b-lactams were: 58.9% to cefepime, 60.9% to ceftazidime, 67.1% to piperacillin-tazobactam, 88.0% to imipenem, and 66.8% to meropenem. Production of VIM-type metallo-b-lactamases was detected in 28.3% of the isolates. Most of the isolates were insusceptible to fluoroquinolones: ciprofloxacin (67.6%) and levofloxacin (70.8%), and to aminoglycosides: gentamicin (62.7%), amikacin (57.7%), and tobramycin (50.1%). Polymyxins had the highest in vitro activity with non-susceptibility rates being as low as 3.2% to colistin and 4.7% to polymyxin B. Eleven percent of the isolates had the MIC of fosfomycin exceeding the epidemiological cut-off value of 128 mg/l. Notably, 57.4% of the isolates were categorised as extensively drugresistant (XDR) and 0.3% – as pan-drug-resistant (PDR).
-
1.
Решедько Г.К., Рябкова Е.Л., Фаращук А.Н., Страчунский Л.С., Туркутюков В.Б., Нехаева Г.И., Розанова С.М., Боронина Л.Г., Агапова Е.Д., Марусина Н.Е., Мултых И. Г., Тарабан В.К., Здзитовецкий Д.Э., Сарматова Н.И., Тихонов Ю.Г., Поликарпова С. В., Большаков Л. В., Богомолова Н. С., Дмитриева Н.В., Петухова И.Н. и др. Неферментирующие грамотрицательные возбудители нозокомиальных инфекций в ОРИТ России: проблемы антибиотикорезистентности. Клин микробиол антимикроб химиотер 2006; 8(3):243-59.
-
2.
Решедько Г. К., Рябкова Е. Л., Кречикова О. И., Сухорукова М. В., Шевченко О. В., Эйдельштейн М. В., Козлов Р. С., Туркутюков В. Б., Нехаева Г. И., Бочкарев Д. Н., Розанова С. М., Боронина Л. Г., Агапова Е. Д., Марусина Н. Е., Мултых И. Г., Тарабан В. К., Здзитовецкий Д. Э., Сарматова Н. И., Тихонов Ю. Г., Поликарпова С. В. и др. Резистентность к антибиотикам грамотрицательных возбудителей нозокомиальных инфекций в ОРИТ многопрофильных стационаров России. Клин микробиол антимикроб химиотер 2008; 10(2):96-112.
-
3.
Skleenova E., Sukhorukova M., Timokhova A., Martinovich A, Savochkina J., Edelstein M., Kozlov R. Sharp increase in carbapenem-non-susceptibility and carbapenemase production rates in nosocomial Gramnegative bacteria in Russia over the last decade. Abstr. C2-1092. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 2012, Denver, CO, USA.
-
4.
Эйдельштейн М.В., Склеенова Е.Ю., Шевченко О.В., Тапальский Д. В., Азизов И.С., Дсоуза Д. В., Тимохова А. В., Сухорукова М. В., Козырева В. К., Сафронова Е. В., Астахова М. В., Карпов И. А., Шамаева С. Х., Абрамова Н. В., Гординская Н. А., Козлов Р.С. Распространенность и молекулярная эпидемиология грамотрицательных бактерий, продуцирующих металло-бета-лактамазы, в России, Беларуси и Казахстане. Клин микробиол антимикроб химиотер 2012; 14(2):132-52.
-
5.
Breidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19(8):419-26
-
6.
Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 2014;15(10):1351-70.
-
7.
Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallobeta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18(2):306-25.
-
8.
Edelstein MV, Skleenova EN, Shevchenko OV, D’souza JW, Tapalski DV, Azizov IS, Sukhorukova MV, Pavlukov RA, Kozlov RS, Toleman MA, Walsh TR. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis 2013; 13(10):867-76.
-
9.
Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3 (2):163-75.
-
10.
Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 (S1):5- 16.
-
11.
European Committee on Antimicrobial Susceptibility testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Ver. 4.02014 (http://www.eucast.org/clinical_breakpoints/).
-
12.
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. CLSI document M100-S24. Wayne, PA: 2014.
-
13.
Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother 2012; 56 (12):6437-40.
-
14.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3):268-81.
-
15.
Salavei M., Skleenova E., Edelstein M., Krechikova O., Karpov I. First report of pandrug-resistant metallo-betalactamase-producing Pseudomonas aeruginosa isolates in Belarus. Abstr. P1207. 24th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2010. Barcelona, Spain.