Abstract
At the present article we evaluate a relatively new method of the evaluation of activity of antimicrobials against bacterial biofilms. This method combines the possibilities of simultaneous evaluation of bacterial survival in biofilm in the presence of antimicrobial agent and filtration ability of the biofilm for this antimicrobial agent. The perspective of this method was demonstrated in the model of Staphylococcus aureus biofilm. During the study we evaluated peculiarities of the susceptibility of biofilmforming bacterial cells to pefloxacin. S. aureus survival rates in the biofilm were higher than those for non-biofilm cells. Diffusion rate of pefloxacin through the membrane with biofilm was significantly lower than that through the membrane with non-biofilm forming S. aureus culture.
-
1.
Donlan R.M., Costerton J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15(2):167–93.
-
2.
Бехало В.А., Бондаренко В.М., Сысолятина Е.В., Нагурская Е.В. Иммунобиологические особенности бактериальных клеток медицинских биопленок. Журн Микробол 2010; (4):97-105.
-
3.
Peeters E., Nelis H. J., Coenye T. Evaluation of the efficacy of disinfection procedures against Burkholderia cepacia biofilms. J Hosp Infect 2008; 70:361–8.
-
4.
Чеботарь И.В., Маянский А.Н., Кончакова Е.Д., Лазарева А.В., Чистякова В.П. Антибиотикорезистентность биоплёночных бактерий. Клин микробиол антимикроб химиотер 2012; 14:51-8.
-
5.
Moskowitz S.M., Foster J.M., Emerson J., Burns J.L. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2004; 42:1915-22.
-
6.
Frank K.L., Reichert E.J., Piper K.E., Patel R. In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates. Antimicrob Agents Chemother 2007; 51:888-95.
-
7.
Sepandj F., Ceri H., Gibb A., Read R., Olson M. Minimum inhibitory concentration (MIC) versus minimum biofilm eliminating concentration (MBEC) in evaluation of antibiotic sensitivity of gram-negative bacilli causing peritonitis. Perit Dial Int 2004; 24:65-7.
-
8.
Маянский А.Н., Чеботарь И.В. Стафилококковые биопленки: структура, регуляция, отторжение. Журн микробиол 2011; (1):101-8.
-
9.
Чеботарь И.В., Кончакова Е.Д., Евтеева Н.И. Нейтрофилзависимое разрушение биоплёнок, образованных Staphylococcus aureus. Журн микробиол 2012; (1):10-1.
-
10.
Антибактериальные лекарственные средства. Методы стандартизации препаратов. Под редакцией Хабриева Р.У. - М.: ОАО «Издательство «Медицина», 2004. 944 с.
-
11.
Льюис К. Персистирующие клетки и загадка выживания биоплёнок. Биохимия 2005; 70(2):327-36.
-
12.
Dunne W.M. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002; 15(2):155-66.
-
13.
Sadovskaya I., Vinogradov E., Li J., Hachani A., , Kowalska K., Filloux A. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated β-(1→3)-glucans, which bind aminoglycosides. Glycobiology 2010; 20(7):895-904.
-
14.
Farber, B. F., Kaplan M. H., Clogston A. G. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptides antibiotics. J Infect Dis 1990; 161: 37-40.
-
15.
Mathur T., Singhal S, Khan S, Upadhyay D, Fatma T, Rattan A. Adverse effect of staphylococci slime on in vitro activity of glycopeptides. Jpn J Infect Dis 2005; 58(6): 353-7.
-
16.
Singh R., Ray P., Das A., Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 2010; 65:1955-8.