Аннотация
Пандемия COVID-19 придала дополнительный импульс к изучению респираторного микробиома. Дисбиотические изменения, возникающие в результате взаимодействия вируса SARS-CoV-2 c клетками респираторного тракта, могут повысить восприимчивость организма к вторичным инфекциям или усилить тяжесть основного заболевания. Ряд исследований указывают на защитный эффект отдельных представителей нормобиоты при взаимодействии с вирусами – возбудителями острых респираторных инфекций. Несмотря на наличие противоречивых результатов, связанных с отличиями в методиках проведения исследований, различной техникой отбора биоматериала, различиями обследованных групп пациентов по степени тяжести, наличию сопутствующих заболеваний и другими факторами, полученные данные позволяют рассматривать респираторный микробиом как одно из основных звеньев патогенеза инфекции COVID-19. В статье подробно освещены последние научные данные о составе микробиоты верхних дыхательных путей у инфицированных SARS-CoV-2, о возможных механизмах защитного действия микроорганизмов против нового коронавируса. Представлен обзор исследований, посвященных вторичным бактериальным и грибковым коинфекциям, вызванным условно-патогенными представителями микробиоты респираторного тракта, и суперинфекциям внутрибольничными патогенами: бактериями (преимущественно из группы ESCAPE патогенов с множественной лекарственной устойчивостью) и грибами – микромицетами. Обсуждается вопрос дальнейших перспектив разработки новых диагностических и терапевтических подходов по коррекции дисбиотических нарушений респираторной микробиоты, ассоциированных с повреждающим действием коронавируса SARS-CoV-2.
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия
-
1.
Mirzaei R., Goodarzi P., Asadi M., Soltani A., Aljanabi H.A.A., Jeda A.S., et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020;72(10):2097-2111.
DOI: 10.1002/iub.2356
-
2.
Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: a systematic review and metaanalysis. J Infect. 2020;81(2):266-275.
DOI: 10.1016/j.jinf.2020.05.046
-
3.
Kumpitsch C., Koskinen K., Schopf V., Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17(1):87.
DOI: 10.1186/s12915-019-0703-z
-
4.
de Steenhuijsen Piters W.A., Sanders E.A., Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc Lond B Biol Sci. 2015;370(1675).
DOI: 10.1098/rstb.2014.0294
-
5.
Khatiwada S., Subedi A. Lung microbiome and coronavirus disease 2019 (COVID-19): possible link and implications. Hum Microb J. 2020;17:100073.
DOI: 10.1016/j.humic.2020.100073
-
6.
Dickson R.P., Martinez F.J., Huffnagle G.B. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384:691-702.
DOI: 10.1016/S0140-6736(14)61136-3
-
7.
Huffnagle G.B., Dickson R.P., Lukacs N.W. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017;10:299-306.
DOI: 10.1038/mi.2016.108
-
8.
Lloréns-Rico V., Gregory A.C., Van Weyenbergh J., Jansen S., Van Buyten T., Qian J., et al. Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host. Nat Commun. 2021;12(1):6243.
DOI: 10.1038/s41467-021-26500-8
-
9.
Starikova E.V., Galeeva Yu.C., Il'ina E.N. The upper respiratory tract microbiome and its role in human health: barrier function. Pul'monologiya. 2022;32(6):876-884. Russian. (Старикова Е.В., Галеева Ю.Е., Ильина Е.Н. Роль микробиома верхних дыхательных путей в здоровье человека: барьерная функция. Пульмонология. 2022;32(6):876-884.)
DOI: 10.18093/0869-0189-2022-32-6-876-884
-
10.
Rattanaburi S., Sawaswong V., Chitcharoen S., Sivapornnukul P., Nimsamer P., Suntronwong N., et al. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood). 2022;247(5):409-415.
DOI: 10.1177/15353702211057473
-
11.
Man W.H., de Steenhuijsen Piters W.A., Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259-270.
DOI: 10.1038/nrmicro.2017.14
-
12.
Walters K.E., Martiny J.B.H. Alpha-, beta-, and gammadiversity of bacteria varies across habitats. PLoS One. 2020;15(9):e0233872.
DOI: 10.1371/journal.pone.0233872
-
13.
Rosas-Salazar C., Kimura K.S., Shilts M.H., Strickland B.A., Freeman M.H., Wessinger B.C., et al. SARS-CoV-2 infection and viral load are associated with the upper respiratory tract microbiome. J Allergy Clin Immunol. 2021;147(4):1226-1233.
DOI: 1016 /j.jaci.2021.02.001
-
14.
De Maio F., Posteraro B., Ponziani F.R., Cattani P., Gasbarrini A., Sanguinetti M. Nasopharyngeal microbiota profiling of SARS-CoV-2 infected patients. Biol Proced Online. 2020;22:18.
DOI: 10.1186/s12575-020-00131-7
-
15.
Hernandez-Teran A., Mejia-Nepomuceno F., Herrera M.T., Barreto O., Garcia E., Castillejos M., et al. Dysbiosis and structural disruption of the respiratory microbiota in COVID- 19 patients with severe and fatal outcomes. Sci Rep. 2021;11(1):21297.
DOI: 10.1038/s41598-021-00851-0
-
16.
Mostafa H.H., Fissel J.A., Fanelli B., Bergman Y., Gniazdowski V., Dadlani M., et al. Metagenomic nextgeneration sequencing of nasopharyngeal specimens collected from confirmed and suspect COVID-19 patients. mBio. 2020;11(6):e01969-20.
DOI: 10.1128/mBio.01969-20
-
17.
Han Y., Jia Z., Shi J., Wang W., He K. The active lung microbiota landscape of COVID-19 patients through the metatranscriptome data analysis. Bioimpacts. 2022;12(2):139-146.
DOI: 10.34172/bi.2021.23378
-
18.
Ventero M.P., Cuadrat R.R.C., Vidal I., Andrade B.G.N., Molina-Pardines C., Haro-Moreno J.M., et al. Nasopharyngeal microbial communities of patients infected with SARS-CoV-2 that developed COVID-19. Front Microbiol. 2021;12:637430.
DOI: 10.3389/fmicb.2021.637430
-
19.
Braun T., Halevi S., Hadar R., Efroni G., Glick Saar E., Keller N., et al. SARS-CoV-2 does not have a strong effect on the nasopharyngeal microbial composition. Sci Rep. 2021;11(1):8922.
DOI: 10.1038/s41598-021-88536-6
-
20.
Yasir М., Al-Sharif H.A., Al-Subhi T., Sindi А.A., Bokhary D.H., El-Daly М.М., et al. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. J Infect Public Health. 2023;16(5):680-688.
DOI: 10.1016/j.jiph.2023.03.001.
-
21.
Kumar D., Pandit R., Sharma S., Raval J., Patel Z., Joshi M., Joshi C.G. Nasopharyngeal microbiome of COVID-19 patients revealed a distinct bacterial profile in deceased and recovered individuals. Micro Pathog. 2022;173(Pt. A):105829.
DOI: 10.1016/j.micpath.2022.105829
-
22.
Ren L., Wang Y., Zhong J., Li X., Xiao Y., Li J. Dynamics of the upper respiratory tract microbiota and its association with mortality in COVID-19. Am J Respir Crit Care Med. 2021;204(12):1379-1390.
DOI: 10.1164/rccm.202103-0814OC
-
23.
Edouard S., Million M., Bachar D., Dubourg G., Michelle C., Ninove L., et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis. 2018;37(9):1725-1733.
DOI: 10.1007/s10096-018-3305-8
-
24.
Brugger S.D., Bomar L., Lemon K.P. Commensal-pathogen interactions along the human nasal passages. PLoS Pathog. 2016;12(7):e1005633.
DOI: 10.1371/journal.ppat.1005633
-
25.
Nardelli C., Gentile I., Setaro M., Di Domenico C., Pinchera B., Buonomo A.R., et al. Nasopharyngeal microbiome signature in COVID-19 positive patients: can we definitively get a role to Fusobacterium periodonticum? Front Cell Infect Microbiol. 2021;11:625581.
DOI: 10.3389/fcimb.2021.625581
-
26.
Nardelli C., Scaglione G.L., Testa D., Setaro M., Russo F., Di Domenico C., et al. Nasal microbiome in COVID-19: a potential role of Corynebacterium in anosmia. Curr Microbiol. 2022;80(1):53.
DOI: 10.1007/s00284-022-03106-x
-
27.
Morniroli D., Gianni M.L., Consales A., Pietrasanta С., Moscaet F. Human Sialome and Coronavirus disease-2019 (COVID-19) pandemic: an understated correlation? Front Immunol. 2020;11:1480.
DOI: 10.3389/fimmu.2020.01480
-
28.
Honarmand Ebrahimi K. SARS-CoV-2 spike glycoproteinbinding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Lett. 2020;594(11):1651-1660.
DOI: 10.1002/1873-3468.13845
-
29.
Merenstein C., Bushman F.D., Collman R.G. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. Microbiome. 2022;10(1):165.
DOI: 10.1186/s40168-022-01342-8
-
30.
Gupta A., Karyakarte R., Joshi S., Das R., Jani K., Shouche Y., Sharma A. Nasopharyngeal microbiome reveals the prevalence of opportunistic pathogens in SARS-CoV-2 infected individuals and their association with host types. Microbes Infect. 2022;24(1):104880.
DOI: 10.1016/j.micinf.2021.104880
-
31.
Gao M., Wang H., Luo H., Sun Y., Wang L., Ding S., et al. Characterization of the human oropharyngeal microbiomes in SARS-CoV-2 infection and recovery patients. Adv Sci (Weinh). 2021;8(20):e2102785.
DOI: 10.1002/advs.202102785
-
32.
Bomar L., Brugger S.D., Yost B.H., Davies S.S., Lemon K.P. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio. 2016;7(1):e01725-15.
DOI: 10.1128/mBio.01725-15
-
33.
Gallo O, Locatello L.G., Mazzoni A., Novelli L., Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021;14(2): 305-316.
DOI: 10.1038/s41385-020-00359-2
-
34.
Kanmani P., Clua P., Vizoso-Pinto M.G., Rodriguez C., Alvarez S., Melnikov V., et al. Respiratory commensal bacteria Corynebacterium pseudodiphtheriticum improves resistance of infant mice to respiratory syncytial virus and Streptococcus pneumoniae superinfection. Front Microbiol. 2017;8:1613.
DOI: 10.3389/fmicb.2017.01613
-
35.
Liu J., Liu S., Zhang Z., Lee X., Wu W., Huang Z., et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol. 2021;6(3):135-143.
DOI: 10.1016/j.synbio.2021.06.002
-
36.
Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635-1638.
DOI: 10.1126/science.1110591
-
37.
Hoque M.N., Rahman M.S., Ahmed R., Hossain M.S., Islam M.S., Islam T., et al. Diversity and genomic determinants of the microbiomes associated with COVID-19 and non-COVID respiratory diseases. Gene Rep. 2021; 23:101200.
DOI: 10.1016/j.genrep.2021.101200
-
38.
Zhu X., Ge Y., Wu T., Zhao K., Chen Y., Wu B. Coinfection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020;285:198005.
DOI: 10.1016/j.virusres.2020.198005
-
39.
Vijay S., Bansal N., Rao B.K., Veeraraghavan B., Rodrigues C., Wattal C., et al. Secondary infections in hospitalized COVID-19 patients: Indian experience. Infect Drug Resist. 2021;14:1893-1903.
DOI: 10.2147/IDR.S299774
-
40.
Ginsburg A.S., Klugman K.P. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob Health. 2020;8(12):e1453-1454.
DOI: 10.1016/S2214-109X(20)30444-7
-
41.
Musuuza J.S., Watson L., Parmasad V., Putman-Buehler N., Christensen L., Safdar N. Prevalence and outcomes of coinfection and superinfection with SARS-CoV-2 and other pathogens: a systematic review and meta-analysis. PLoS One. 2021;16(5):e0251170.
DOI: 10.1371/journal.pone.0251170
-
42.
Zhang H., Ai J.W., Yang W., Zhou X., He F., Xie S., et al. Metatranscriptomic characterization of coronavirus disease 2019 identified a host transcriptional classifier associated with immune signaling. Clin Infect Dis. 2021;73(3): 376-385.
DOI: 10.1093/cid/ciaa66
-
43.
Miao Q., Ma Y., Ling Y., Jin W., Su Y., Wang Q., et al. Evaluation of superinfection, antimicrobial usage, and airway microbiome with metagenomic sequencing in COVID-19 patients: a cohort study in Shanghai. J Microbiol Immunol Infect. 2021;54(5):808-815.
DOI: 10.1016/j.jmii.2021.03.015
-
44.
Koehler P., Cornely O.A., Bottiger B.W., Dusse F., Eichenauer D.A., Fuchs F., et al. COVID-19 associated pulmonary aspergillosis. Mycoses. 2020;63(6):528-534.
DOI: 10.1111/myc.13096
-
45.
Langford B.J., So M., Raybardhan S., Leung V., Westwood D., MacFadden D.R., et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020;26(12):1622-1629.
DOI: 10.1016/j.cmi.2020.07.016.
-
46.
Peddu V., Shean R.C., Xie H., Shrestha L., Perchetti G.A., Minot S.S., et al. Metagenomic analysis reveals clinical SARS-CoV-2 infection and bacterial or viral superinfection and colonization. Clin Chem. 2020;66(7):966-972.
DOI: 10.1093/clinchem/hvaa106
-
47.
Bassetti M., Kollef M.H., Timsit J.F. Bacterial and fungal superinfections in critically ill patients with COVID-19. Intensive Care Med. 2020;46(11):2071-2074.
DOI: 10.1007/s00134-020-06219-8
-
48.
Arunachalam P.S., Wimmers F., Mok C.K.P., PereraR.A.P.M., Scott M., Hagan T., et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210-1220.
DOI: 10.1126/science.abc6261
-
49.
Rossi G.A., Fanous H., Colin A.A. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr Pulmonol. 2020;55(4):1061-1073.
DOI: 10.1002/ppul.24699
-
50.
Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768.
DOI: 10.1093/cid/ciaa248
-
51.
Lee I.T., Nakayama T., Wu C.T., Goltsev Y., Jiang S., Gall P.A., et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun. 2020;11(1):5453.
DOI: 10.1038/s41467-020-19145-6
-
52.
Casalini G., Giacomelli A., Ridolfo A., Gervasoni C., Antinori S. Invasive fungal infections complicating COVID-19: a narrative review. J Fungi (Basel). 2021;7(11):921.
DOI: 10.3390/jof7110921
-
53.
Salehi M., Ahmadikia K., Mahmoudi S., Kalantari S., Jamalimoghadamsiahkali S., Izadi A., et al. Oropharyngeal candidiasis in hos-pitalised COVID-19 patients from Iran: species identification and antifungal susceptibility pattern. Mycoses. 2020;63(8):771-778.
DOI: 10.1111/myc.13137
-
54.
Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020;215(1):87-93.
DOI: 10.2214/AJR.20.23034
-
55.
Chen X., Liao B., Cheng L., Peng X., Xu X., Li Y., et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020;104(18):7777-7785.
DOI: 10.1007/s00253-020-10814-6
-
56.
Bondarenko A.P., Shmylenko V.A., Trotsenko O.E., Kotova V.O., Butakova L.V., Bazykina E.A. Сharacteristics of bacterial microflora isolated from sputum of patients with pneumonia registered in Khabarovsk city and Khabarovsk region in the initial period of COVID-19 pandemic in May-June, 2020. Рroblemy` osobo opasny`x infekcij. 2020;3:43-49. Russian. (Бондаренко А.П., Шмыленко В.А., Троценко О.Е., Котова В.О., Бутакова Л.В., Базыкина Е.А. Характеристика бактериальной микрофлоры, выделенной из проб мокроты больных пневмонией в Хабаровске и Хабаровском крае в начальный период пандемии COVID-19 (майиюнь 2020 г.). Проблемы особо опасных инфекций. 2020;3:43-49.)
DOI: 10.21055/0370-1069-2020-3-43-49
-
57.
Popova A.Yu., Ezhlova E.B., Demina Yu.V., Noskov A.K., Kovalev E.V., Chemisova O.S., et al. Features of etiology of community-acquired pneumonia associated with COVID-19. Рroblemy` osobo opasny`x infekcij. 2020;4:99-105. Russian. (Попова А.Ю., Ежлова Е.Б., Демина Ю.В., Носков А.К., Ковалев Е.В., Чемисова О.С. и соавт. Особенности этиологии внебольничных пневмоний, ассоциированных с COVID-19. Проблемы особо опасных инфекций. 2020;4:99-105.)
DOI: 10.21055/0370-1069-2020-4-99-105
-
58.
Lisovskaya S.A., Isaeva G.S., Nikolaeva I.V., Guseva S.E., Gainatullina L.R., Chumarev N.S. Colonization and azole resistance of oropharyngeal Candida fungi in intensive care patients with COVID-19. Infekciya i immunitet. 2023;13(2):347-354. Russian. (Лисовская С.А., Исаева Г.Ш., Николаева И.В., Гусева С.Е., Гайнатуллина Л.Р., Чумарев Н.С. Частота колонизации ротоглотки и резистентность к азолам грибов Candida spp., выделенных у реанимационных пациентов с COVID-19. Инфекция и иммунитет. 2023;13(2):347-354.)
DOI: 10.15789/2220-7619-CAA-2059
-
59.
Devaux C., Colson P., Raoult D., Rolain J.M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents. 2020;55(4):105944.
DOI: 10.1016/j.ijantimicag.2020.105944
-
60.
Du Y., Tu L., Zhu P., Mu M., Wang R., Yang P., et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med. 2020;201(11):1372-1379.
DOI: 10.1164/rccm.202003-0543OC
-
61.
Ministry of Health of the Russian Federation. Temporary methodological recommendations on prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 18 (26.10.2023). Russian. (Министерство здравоохранения Российской федерации. Временные методические рекомендации профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 18 (26.10.2023 г.)