Аннотация
В настоящем обзоре рассматриваются причины, которые привели к тому, что Klebsiella pneumoniae становится самым опасным оппортунистическим патогеном для человека. Кратко описаны история открытия K. pneumoniae и ее микробиологические свойства. Перечислены формы патологии, которые может вызывать K. pneumoniae. Детально проанализированы молекулярно-генетические основы вирулентности и антибиотикорезистентности K. pneumoniae. Сделан вывод о том, что главной причиной опасности клебсиелл является их способность формировать устойчивость к представителям всех классов антибиотиков.
ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
ФГАОУ ВО «Российский университет дружбы народов», Москва, Россия
ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
ФБУН «ЦНИИ эпидемиологии» Роспотребнадзора, Москва, Россия
-
1.
Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B., et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1-12.
DOI: 10.1086/595011
-
2.
World Health Organization. Global Priority List of AntibioticResistance Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: World Health Organization, 2017. Available at: http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/. Accessed August 2019.
-
3.
Magill S.S., Edwards J.R., Bamberg W., Beldavs Z.G., Dumyati G., Kainer M.A., et al. Multistate point prevalence survey of health care-associated infections. N Engl J Med. 2014;370:11981208.
DOI: 10.1056/NEJMoa1306801
-
4.
Cubero M., Grau I., Tubau F., Pallares R., Dominguez M.A., Linares, J., et al. Molecular epidemiology of Klebsiella pneumoniae strains causing bloodstream infections in adults. Microb Drug Resist. 2018;24(7):949-957.
DOI: 10.1089/mdr.2017.0107
-
5.
Martin R.M., Bachman M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4.
DOI: 10.3389/fcimb.2018.00004
-
6.
Friedlaender C. Ueber die Schizomyceten bei der acuten fibrösen Pneumonie. Archiv F Pathol Anat. 1882;87:319-324.
DOI: 10.1007/BF01880516
-
7.
von Frisch A. Zur Atiologie des Rhinoskleroms. Wien Med Wochenschr. 1882;32:969-972.
-
8.
Abel R. Bakteriologische Studien uber Ozaena simplex. Zentralbl Bakteriol Parazitenk Infektionskr Hyg Abt I Orig. 1893;13:161173.
-
9.
Etiology of ozena. [No authors listed] Cal State J Med. 1916;14(8):308-309.
-
10.
Krieg N.R., Holt J.G. Bergey’s manual of Systematic Bacteriology. Baltimore-London: Williams & Wilkins; 1984. Volume 1, 461465 pp.
-
11.
Brill W.J. Biochemical genetics of nitrogen fixation. Microbiol Rev. 1980;44(3):449-467.
-
12.
Orskov I., Orskov F. Serotyping of Klebsiella. In: Methods in Microbiology; 1984. Volume 14, 143-164 pp.
-
13.
Hansen D.S., Mestre F., Alberti S., Hernandez-Alles S., Alvarez D., Domenech-Sanchez A., et al. Klebsiella pneumoniae lipopolysaccharide O typing: revision of prototype strains and O-group distribution among clinical isolates from different sources and countries. J Clin Microbiol. 1999;37(1):56-62. PMID: 9854064
-
14.
Labrie S., Samson J., Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317-327.
DOI: 10.1038/nrmicro2315
-
15.
Davis T.J., Matsen J.M. Prevalence and characteristics of Klebsiella species: relation to association with a hospital environment. J Infect Dis. 1974;130:402-405.
DOI: 10.1093/infdis/130.4.402
-
16.
Podschun R., Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603. PMID: 9767057
-
17.
Bagley S.T. Habitat association of Klebsiella species. Infect Control. 1985;6:52-58.
DOI: 10.1017/S0195941700062603
-
18.
Podschun R., Pietsch S., Höller C., Ullmann U. Incidence of Klebsiella species in surface waters and their expression of virulence factors. Appl Environ Microbiol. 2001;67:3325-3327.
DOI: 10.1128/AEM.67.7.3325-3327.2001
-
19.
Podschun R. Phenotypic properties of Klebsiella pneumoniae and K. oxytoca isolated from different sources. Zentralbl Hyg Umweltmed. 1990;189(6):527-535. PMID: 2200423
-
20.
Salzman T.C., Clark J.J., Klemm L. Hand contamination of personnel as a mechanism of cross-infection in nosocomial infections with antibiotic-resistant Escherichia coli and KlebsiellaAerobacter. Antimicrob Agents Chemother. 1967;(7):97-100. PMID: 4876096
-
21.
Jarvis W.R., Munn V.P., Highsmith A.K., Culver D.H., Hughes J.M. The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect Control. 1985;6:68-74.
DOI: 10.1017/S0195941700062639
-
22.
Casewell M., Phillips I. Hands as route of transmission for Klebsiella species. Br Med J. 1977;2:1315-1317.
DOI: 10.1136/bmj.2.6098.1315
-
23.
Bodena D., Teklemariam Z., Balakrishnan S., Tesfa T. Bacterial contamination of mobile phones of health professionals in Eastern Ethiopia: antimicrobial susceptibility and associated factors. Trop Med Health. 2019;47:15.
DOI: 10.1186/s41182-019-0144-y
-
24.
Gupta A., Della-Latta P., Todd B., San Gabriel P., Haas, J., Wu F., et al. Outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit linked to artificial nails. Infect Control Hosp Epidemiol. 2004;25(3):210215.
DOI: 10.1086/502380
-
25.
Lazarus B., Paterson D.L., Mollinger J.L., Rogers B.A. Do human extraintestinal Escherichia coli infections resistant to expandedspectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis. 2015;60:439-452.
DOI: 10.1093/cid/ciu785
-
26.
Xu L., Sun X., Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18.
DOI: 10.1186/s12941-017-0191-3
-
27.
Doebbeling B.N. Epidemics: identification and management. In: Prevention and control of nosocomial infections. 2nd Ed. The Williams & Wilkins Co., Baltimore, Md; 1993. 177-206 pp.
-
28.
Ulrich N., Gastmeier P., Vonberg R.P. Effectiveness of healthcare worker screening in hospital outbreaks with gram-negative pathogens: a systematic review. Antimicrob Resist Infect Control. 2018;7:36.
DOI: 10.1186/s13756-018-0330-4
-
29.
Lery L.M., Frangeul L., Tomas A., Passet V., Almeida A.S., BialekDavenet S., et al. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 2014;12:41.
DOI: 10.1186/17417007-12-41
-
30.
Cortes G., de Astorza B., Benedi V.J., Alberti S. Role of the htrA gene in Klebsiella pneumoniae virulence. Infect Immun. 2002;70(9):4772-4776.
DOI: 10.1128/iai.70.9.47724776.2002
-
31.
Zamze S., Martinez-Pomares L., Jones H., Taylor P.R., Stillion R.J., Gordon S., et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem. 2002;277(44):41613-41623.
DOI: 10.1074/jbc.M207057200
-
32.
Arakawa Y., Wacharotayankun R., Nagatsuka T., Ito H., Kato N., Ohta M. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol. 1995;177(7):1788-1796.
DOI: 10.1128/jb.177.7.17881796.1995
-
33.
Bushell S.R., Mainprize I.L., Wear M.A., Lou H., Whitfield C., Naismith J.H. Wzi is an outer membrane lectin that underpins group 1 capsule assembly in Escherichia coli. Structure. 2013;21(5):844-853.
DOI: 10.1016/j.str.2013.03.010
-
34.
Brisse S., Passet V., Haugaard A.B., Babosan A., KassisChikhani N., Struve C., et al. wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol. 2013;51:4073-4078.
DOI: 10.1128/JCM.01924-13
-
35.
Yu V.L., Hansen D.S., Ko W.C., Sagnimeni A., Klugman K.P., von Gottberg A., et al. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis. 2007;13(7):986-993.
DOI: 10.3201/eid1307.070187
-
36.
Swartz E.P., Rohde P.A. Klebsiella (Friedländer’s Bacillus) infections in an army hospital. Am J Clin Pathol. 1946;16(2):8897.
DOI: 10.1093/ajcp/16.2.88
-
37.
Hsu C.R., Lin T.L., Chen Y.C., Chou H.C., Wang J.T. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology. 2011;157:3446-3457.
DOI: 10.1099/mic.0.050336-0
-
38.
Wacharotayankun R., Arakawa Y., Ohta M., Tanaka K., Akashi T., Mori M., et al. Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun. 1993;61:3164-3174. PMID: 8335346
-
39.
Su K., Zhou X., Luo M., Xu X., Liu P., Li X., et al. Genome-wide identification of genes regulated by RcsA, RcsB, and RcsAB phosphorelay regulators in Klebsiella pneumoniae NTUH-K2044. Microb Pathog. 2018;123:36-41.
DOI: 10.1016/j.micpath.2018.06.036
-
40.
Fang C.T., Lai S.Y., Yi W.C., Hsueh P.R., Liu K.L. The function of wzy_K1 (magA), the serotype K1 polymerase gene in Klebsiella pneumoniae cps gene cluster. J Infect Dis. 2010;201:12681269.
DOI: 10.1086/652183
-
41.
Guo X.P., Sun Y.C. New insights into the non-orthodox two component Rcs phosphorelay system. Front Microbiol. 2017;8:2014.
DOI: 10.3389/fmicb.2017.02014
-
42.
Yu W.L., Ko W.C., Cheng K.C., Lee C.C., Lai C.C., Chuang Y.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis. 2008;62(1):1-6.
DOI: 10.1016/j.diagmicrobio.2008.04.007
-
43.
Regueiro V., Campos M.A., Pons J., Alberti S., Bengoechea J.A. The uptake of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory response by human airway epithelial cells. Microbiology. 2006;152:555-566.
DOI: 10.1099/mic.0.28285-0
-
44.
Merino S., Camprubi S., Alberti S., Benedi V.J., Tomas J.M. Mechanisms of Klebsiella pneumoniae resistance to complementmediated killing. Infect Immun. 1992;60(6):2529-2535. PMID: 1587619
-
45.
Alvarez D., Merino S., Tomas J.M., Benedi V.J., Alberti S. Capsular polysaccharide is a major complement resistance factor in lipopolysaccharide O side chain-deficient Klebsiella pneumoniae clinical isolates. Infect Immun. 2000;68(2):953955.
DOI: 10.1128/iai.68.2.953-955.2000
-
46.
Kabha K., Schmegner J., Keisari Y., Parolis H., SchlepperSchaeffer J., Ofek I. SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol. 1997;272(2):L344-L352.
DOI: 10.1152/ajplung.1997.272.2.L344
-
47.
Ofek I., Mesika A., Kalina M., Keisari Y., Podschun R., Sahly H., et al. Surfactant protein D enhances phagocytosis and killing of unencapsulated phase variants of Klebsiella pneumoniae. Infect Immun. 2001;69(1):24-33.
DOI: 10.1128/IAI.69.1.2433.2001
-
48.
Campos M.C., Vargas M.A., Regueiro V., Llompart C.M., Alberti S., Bengoechea J.A. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72(12):7107-7114.
DOI: 10.1128/IAI.72.12.71077114.2004
-
49.
Domenico P., Tomas J.M., Merino S., Rubires X., Cunha B.A. Surface antigen exposure by bismuth dimercaprol suppression of Klebsiella pneumoniae capsular polysaccharide. Infect Immun. 1999;67(2):664-669. PMID: 9916074
-
50.
Doorduijn D.J., Rooijakkers S.H., van Schaik W., Bardoel B.W. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology. 2016;221(10):1102-1109.
DOI: 10.1016/j.imbio.2016.06.014
-
51.
Sahly H., Keisari Y., Ofek I. Manno(rhamno)biose-containing capsular polysaccharides of Klebsiella pneumoniae enhance opsono-stimulation of human polymorphonuclear leukocytes. J Innate Immun. 2009;1(2):136-144.
DOI: 10.1159/000154812
-
52.
Mamat U., Skurnik M., Bengoechea J.A. Lipopolysaccharide core oligosaccharide biosynthesis and assembly. In: Knirel Y., Valvano M. (Eds.) Bacterial Lipopolysaccharides. Springer; 2011. Chapter 1, 237-273 pp.
-
53.
Raetz C.R., Guan Z., Ingram B.O., Six D.A., Song F., Wang X., et al. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res. 2009;50:S103-S108.
DOI: 10.1194/jlr.R800060JLR200
-
54.
Follador R., Heinz E., Wyres K.L., Ellington M.J., Kowarik M., Holt K.E., et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom. 2016;2(8):e000073.
DOI: 10.1099/mgen.0.000073
-
55.
Hsieh P.F., Lin T.L., Yang F.L., Wu M.C., Pan Y.J., Wu S.H., et al. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PLoS One. 2012;7(3):e33155.
DOI: 10.1371/journal.pone.0033155
-
56.
Regue M., Izquierdo L., Fresno S., Pique N, Corsaro M.M., Naldi T., et al. A second outer-core region in Klebsiella pneumoniae lipopolysaccharide. J Bacteriol. 2005;187(12):4198-4206.
DOI: 10.1128/JB.187.12.4198-4206.2005
-
57.
Alexander C., Rietschel E.T. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res. 2001;7(3):167-202. PMID: 11581570
-
58.
Adams P.G., Lamoureux L., Swingle K.L., Mukundan H., Montano G.A. Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks. Biophys J. 2014;106(11):2395-2407.
DOI: 10.1016/j.bpj.2014.04.016
-
59.
Klein G., Lindner B., Brabetz W., Brade H., Raina S. Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J Biol Chem. 2009;284(23):15369-15389.
DOI: 10.1074/jbc.M900490200
-
60.
Mills G., Dumigan A., Kidd T., Hobley L., Bengoechea J.A. Identification and characterization of two Klebsiella pneumoniae lpxL Lipid A late acyltransferases and their role in virulence. Infect Immun. 2017;85(9):e00068-17.
DOI: 10.1128/IAI.00068-17
-
61.
Klein G., Raina S. Regulated assembly of LPS, its structural alterations and cellular response to LPS defects. Int J Mol Sci. 2019;20(2):356.
DOI: 10.3390/ijms20020356
-
62.
Cheng H.Y., Chen Y.F., Peng H.L. Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J Biomed Sci. 2010;17(1):60.
DOI: 10.1186/1423-0127-17-60
-
63.
Llobet E., Campos M.A., Gimenez P., Moranta D., Bengoechea J.A. Analysis of the networks controlling the antimicrobial-peptidedependent induction of Klebsiella pneumoniae virulence factors. Infect Immun. 2011;79(9):3718-3732.
DOI: 10.1128/IAI.05226-11
-
64.
Gunn J.S. Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res. 2001;7(1):57-62. PMID: 11521084
-
65.
Schrol C., Barken K.B., Krogfelt K.A., Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010;10:179.
DOI: 10.1186/1471-2180-10-179
-
66.
Alcantar-Curiel M.D., Blackburn D., Saldana Z., GayossoVazquez C., Iovine N.M., De la Cruz M.A., et al. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence. 2013;4(2):129-138.
DOI: 10.4161/viru.22974
-
67.
Cubero M., Marti S., Dominguez M.A., Gonzalez-Diaz A., Berbel D., Ardanuy C. Hypervirulent Klebsiella pneumoniae serotype K1 clinical isolates form robust biofilms at the air-liquid interface. PLoS One. 2019;14(9):e0222628.
DOI: 10.1371/journal.pone.0222628
-
68.
Bryers J.D. Medical biofilms. Biotechnol Bioeng. 2008;100(1):118.
DOI: 10.1002/bit.21838
-
69.
Bandeira M., Borges V., Gomes J.P., Duarte A., Jordao L. Insights on Klebsiella pneumoniae biofilms assembled on different surfaces using phenotypic and genotypic approaches. Microorganisms. 2017;5(2):16.
DOI: 10.3390/microorganisms5020016
-
70.
Goncalves M.S., Delattre C., Balestrino D., Charbonnel N., Elboutachfaiti R., Wadouachi A., et al. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular olysaccharide. PLoS One. 2014;9(6):e99995.
DOI: 10.1371/journal.pone.0099995
-
71.
Johnson J.G., Murphy C.N., Sippy J., Johnson T.J., Clegg S. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J Bacteriol. 2011;193(14):3453-3460.
DOI: 10.1128/JB.00286-11
-
72.
Huertas M.G., Za´rate L., Acost I.C., Posada L., Cruz D.P., Lozano M., et al. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology. 2014;160:2595-2606.
DOI: 10.1099/mic.0.081992-0
-
73.
Cadavid E., Robledo S.M., Quinones W., Echeverri F. Induction of biofilm formation in Klebsiella pneumoniae ATCC 13884 by several drugs: the possible role of quorum sensing modulation. Antibiotics (Basel). 2018;7(4):103.
DOI: 10.3390/antibiotics7040103
-
74.
Bullen J.J., Rogers H.J., Griffiths E. Iron binding proteins and infection. Br J Haematol. 1972;23:389-392.
DOI: 10.1111/j.1365-2141.1972.tb07073.x
-
75.
Lin C.T., Wu C.C., Chen Y.S., Lai Y.C., Chi C., Lin J.C., et al. Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology. 2011;157(2):419-429.
DOI: 10.1099/mic.0.044065-0
-
76.
Palacios M., Broberg C.A., Walker K.A., Miller V.L. A serendipitous mutation reveals the severe virulence defect of a Klebsiella pneumoniae fepB mutant. mSphere. 2017;2(4):e00341-17.
DOI: 10.1128/mSphere.00341-17
-
77.
Bachman M.A., Oyler J.E., Burns S.H., Caza M., Lepine F, Dozois C.M., et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun. 2011;79(8):3309-3316.
DOI: 10.1128/IAI.05114-11
-
78.
Hsieh P.F., Lin T.L., Lee C.Z., Tsai S.F., Wang J.T. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis. 2008;197(12):1717-1727.
DOI: 10.1086/588383
-
79.
Bachman M.A., Lenio S., Schmidt L., Oyler J.E., Weiser J.N. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio. 2012;3(6). pii: e00224-11.
DOI: 10.1128/mBio.00224-11
-
80.
Chen Y.T., Chang H.Y., Lai Y.C., Pan C.C., Tsai S.F., Peng H.L. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:189-198.
DOI: 10.1016/j.gene.2004.05.008
-
81.
Cuevas-Ramos G., Petit C.R., Marcq I., Boury M., Oswald E., Nougayrede J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010;107(25):11537-11542.
DOI: 10.1073/pnas.1001261107
-
82.
Nougayrede J.P., Homburg S., Taieb F., Boury M., Brzuszkiewicz E., Gottschalk G., et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313(5788):848-851.
DOI: 10.1126/science.1127059
-
83.
Tronnet S., Garcie C., Brachmann A.O., Piel J., Oswald E., Martin P. High iron supply inhibits the synthesis of the genotoxin colibactin by pathogenic Escherichia coli through a non-canonical Fur/RyhB-mediated pathway. Pathog Dis. 2017;75(5).
DOI: 10.1093/femspd/ftx066
-
84.
Garcie C., Tronnet S., Garenaux A., McCarthy A.J., Brachmann A.O., Penary M., et al. The bacterial stress-responsive Hsp90 Chaperone (HtpG) is required for the production of the genotoxin colibactin and the siderophore yersiniabactin in Escherichia coli. J Infect Dis. 2016;214(6):916-924.
DOI: 10.1093/infdis/jiw294
-
85.
Chen Y.T., Lai Y.C., Tan M.C., Hsieh L.Y., Wang J.T., Shiau Y.R., et al. Prevalence and characteristics of pks genotoxin gene clusterpositive clinical Klebsiella pneumoniae isolates in Taiwan. Sci Rep. 2017;7:43120.
DOI: 10.1038/srep43120
-
86.
Tsai Y.K., Fung C.P., Lin J.C., Chen J.H., Chang F.Y., Chen T.L., et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2011;55(4):14851493.
DOI: 10.1128/AAC.01275-10
-
87.
Wise M.G., Horvath E., Young K., Sahm D.F., Kazmierczak K.M. Global survey of Klebsiella pneumoniae major porins from ertapenem non-susceptible isolates lacking carbapenemases. J Med Microbiol. 2018;67(3):289-295.
DOI: 10.1099/jmm.0.000691
-
88.
Sukhorukova M.V., Edelstein M.V., Ivanchik N.V., Skleenova E.Yu., Shajdullina E.R., Azyzov I.S.; «MARATHON» study group. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015-2016”. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2019;21(2):147-159. Russian. (Сухорукова М.В., Эйдельштейн М.В., Иванчик Н.В., Склеенова Е.Ю., Шайдуллина Э.Р., Азизов И.С.; исследовательская группа «МАРАФОН». Антибиотикорезистентность нозокомиальных штаммов Enterobacterales в стационарах России: результаты многоцентрового эпидемиологического исследования «МАРАФОН 2015-2016». Клиническая микробиология и антимикробная химиотерапия. 2019;21(2):147159.)
DOI: 10.36488/cmac.2019.2.147-159
-
89.
Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252-275.
DOI: 10.1093/femsre/fux013
-
90.
Wendel A.F., Brodner A.H., Wydra S., Ressina S., Henrich B., Pfeffer K., et al. Genetic characterization and emergence of the metallo-β-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak. Antimicrob Agents Chemother. 2013;57(10):5162-5165.
DOI: 10.1128/AAC.00118-13
-
91.
Lu Y., Zhao S., Liang H., Zhang W., Liu J., Hu H. The first report of a novel IncHI1B blaSIM-1-carrying megaplasmid pSIM-1-BJ01 from a clinical Klebsiella pneumoniae isolate. Infect Drug Resist. 2019;12:2103-2112.
DOI: 10.2147/IDR.S212333
-
92.
Liakopoulos A., Mevius D., Ceccarelli D. A review of SHV extended-spectrum β-lactamases: neglected yet ubiquitous. Front Microbiol. 2016;7:1374.
DOI: 10.3389/fmicb.2016.01374
-
93.
Bush K., Jacoby G.A., Medeiros A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):12111233.
DOI: 10.1128/aac.39.6.1211
-
94.
Sirot D., Sirot J., Labia R., Morand A., Courvalin P., DarfeuilleMichaud A., et al. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J Antimicrob Chemother. 1987;20(3):323-334.
DOI: 10.1093/jac/20.3.323
-
95.
Dubois V., Poirel L., Demarthe F., Arpin C., Coulange L., Minarini L.A., et al. Molecular and biochemical characterization of SHV-56, a novel inhibitor-resistant β-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2008;52(10):37923794.
DOI: 10.1128/AAC.00387-08
-
96.
Manageiro V., Ferreira E., Cougnoux A., Albuquerque L., Canica M., Bonnet R. Characterization of the inhibitor-resistant SHV β-lactamase SHV-107 in a clinical Klebsiella pneumoniae strain coproducing GES-7 enzyme. Antimicrob Agents Chemother. 2012;56(2):1042-1046.
DOI: 10.1128/AAC.01444-10
-
97.
Gutmann L., Ferre B., Goldstein F.W., Rizk N., Pinto-Schuster E., Acar J.F., et al. SHV-5, a novel SHV-type beta-lactamase that hydrolyzes broad-spectrum cephalosporins and monobactams. Antimicrob Agents Chemother. 1989;33:951-956.
DOI: 10.1128/AAC.33.6.951
-
98.
Nüesch-Inderbinen M.T., Kayser F.H., Hächler H. Survey and molecular genetics of SHV beta-lactamases in Enterobacteriaceae in Switzerland: two novel enzymes, SHV-11 and SHV-12. Antimicrob Agents Chemother. 1997;41(5):943-949. PMID: 9145849
-
99.
Kliebe C., Nies B. A., Meyer J.F., Tolxdorff-Neutzling R.M., Wiedemann B. Evolution of plasmid-coded resistance to broadspectrum cephalosporins. Antimicrob Agents Chemother. 1985;28(2):302-307.
DOI: 10.1128/aac.28.2.302
-
100.
Podbielski A., Schönling J., Melzer B., Warnatz K., Leusch H.G. Molecular characterization of a new plasmid-encoded SHV-type β-lactamase (SHV-2 variant) conferring high-level cefotaxime resistance upon Klebsiella pneumoniae. J Gen Microbiol. 1991;137(3):569-578.
DOI: 10.1099/00221287-137-3-569
-
101.
Poirel L., Heritier C., Podglajen I., Sougakoff W., Gutmann L., Nordmann P. Emergence in Klebsiella pneumoniae оf a chromosome-encoded SHV b-Lactamase that compromises the efficacy of imipenem. Antimicrob Agents Chemother. 2003;47:755-758.
DOI: 10.1128/AAC.47.2.755758.2003
-
102.
Woodford N., Dallow J.W., Hill R.L., Palepou M.F., Pike R., Ward M.E., et al. Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents. 2007;29(4):456-459.
DOI: 10.1016/j.ijantimicag.2006.11.020
-
103.
Pulzova L., Navratilova L., Comor L. Alterations in outer membrane permeability favor drug-resistant phenotype of Klebsiella pneumoniae. Microbi Drug Resist. 2017;23(4):413-420.
DOI: 10.1089/mdr.2016.0017
-
104.
Chen F.J., Lauderdale T.L., Ho M., Lo H.J. The roles of mutations in gyrA, parC, and ompK35 in fluoroquinolone resistance in Klebsiella pneumoniae. Microb Drug Resist. 2003;9(3):265271.
DOI: 10.1089/107662903322286472
-
105.
Heidary M., Bahramian A., Hashemi A., Goudarzi M., Omrani V.F., Eslami G., et al. Detection of acrA, acrB, aac (6′)-Ib-cr, and qepA genes among clinical isolates of Escherichia coli and Klebsiella pneumoniae. Acta Microbiol Immunol Hung. 2017;64(1):63-69.
DOI: 10.1556/030.63.2016.011
-
106.
Wang M., Tran J.H., Jacoby G.A., Zhang Y., Wang F., Hooper D.C. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother. 2003;47:2242-2248.
DOI: 10.1128/aac.47.7.2242-2248.2003
-
107.
Tran J.H., Jacoby G.A. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99(8):5638-5642.
DOI: 10.1073/pnas.082092899
-
108.
Aathithan S., French G.L. Prevalence and role of efflux pump activity in ciprofloxacin resistance in clinical isolates of Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis. 2011;30(6):745752.
DOI: 10.1007/s10096-010-1147-0
-
109.
Rodriguez-Martinez J.M., Diaz de Alba P., Briales A., Machuca J., Lossa M., Fernandez-Cuenca F., et al. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrumβ-lactamase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2013;68(1):68-73.
DOI: 10.1093/jac/dks377
-
110.
Garneau-Tsodikova S., Labby K.J. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm. 2016;7(1):11-27.
DOI: 10.1039/C5MD00344J
-
111.
Xiaoliang W., Huiming H., Chunlei C., Beiwen Z. Genomic characterisation of a colistin-resistant Klebsiella pneumoniae ST11 strain co-producing KPC-2, FloR, CTX-M-55, SHV-12, FosA and RmtB causing a lethal infection. J Glob Antimicrob Resist. 2019;19:78-80.
DOI: 10.1016/j.jgar.2019.08.023
-
112.
Srinivasan V.B., Venkataramaiah M., Mondal A., Vaidyanathan V., Govil T., Rajamohan G. Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. PLoS One. 2012;7(7):e41505.
DOI: 10.1371/journal.pone.0041505
-
113.
Markley J.L., Wencewicz T.A. Tetracycline-inactivating enzymes. Front Microbiol. 2018;9:1058.
DOI: 10.3389/fmicb.2018.01058
-
114.
Villa L., Feudi C., Fortini D., Garcia-Fernandez A., Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother. 2014;58(3):1707-1712.
DOI: 10.1128/AAC.01803-13
-
115.
Li L., Ye L., Zhang S., Meng H. Isolation and identification of aerobic bacteria carrying tetracycline and sulfonamide resistance genes obtained from a meat processing plant. J Food Sci. 2016;81(6):M1480-M1484.
DOI: 10.1111/17503841.13318
-
116.
Ruzin A., Visalli M.A., Keeney D., Bradford P. A. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2005;49(3):10171022.
DOI: 10.1128/AAC.49.3.1017-1022.2005
-
117.
He F., Fu Y., Chen Q., Ruan Z., Hua X., Zhou H., et al. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS One. 2015;10(3):e0119064.
DOI: 10.1371/journal.pone.0119064
-
118.
Ogawa W., Onishi M., Ni R., Tsuchiya T., Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene. 2012;498(2):177-182.
DOI: 10.1016/j.gene.2012.02.008
-
119.
Wang W., Guo Q., Xu X., Sheng Z.K., Ye X., Wang M. High-level tetracycline resistance mediated by efflux pumps Tet (A) and Tet (A)-1 with two start codons. J Med Microbiol. 2014;63(11):14541459.
DOI: 10.1099/jmm.0.078063-0
-
120.
Chiu S.K., Huang L.Y., Chen H., Tsai Y.K., Liou C.H., Lin J.C., et al. Roles of ramR and tet (A) mutations in conferring tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2017;61(8):e0039117.
DOI: 10.1128/AAC.00391-17
-
121.
Domenech-Sanchez A., Martinez-Martinez L., HernandezAlles S., del Carmen Conejo M., Pascual A., Tomas J.M., et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother. 2003;47(10):33323335.
DOI: 10.1128/aac.47.10.3332-3335.2003
-
122.
Gaffney D.F., Foster T.J., Shaw W.V. Chloramphenicol acetyltransferases determined by R plasmids from Gramnegative bacteria. J Gen Microbiol. 1978;109:351-358.
DOI: 10.1099/00221287-109-2-351
-
123.
Vester B., Garrett R.A. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J. 1988;7(11):3577-3587. PMID: 3061800
-
124.
Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28(5):519-542.
DOI: 10.1016/j.femsre.2004.04.001
-
125.
Cloeckaert A., Baucheron S., Chaslus-Dancla E. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant. Antimicrob Agents Chemother. 2001;45(8):2381-2382.
DOI: 10.1128/AAC.45.8.23812382.2001
-
126.
Lu P.L., Hsieh Y.J., Lin J.E., Huang J.W., Yang T.Y., Lin L., et al. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents. 2016;48(5):564-568.
DOI: 10.1016/j.ijantimicag.2016.08.013
-
127.
Bernat B.A., Laughlin L.T., Armstrong R.N. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry. 1997;36:3050-3055.
DOI: 10.1021/bi963172a
-
128.
Ito R., Mustapha M., Tomich A.D., Callaghan J.D., McElheny C.L., Mettus R.T., et al. Widespread fosfomycin resistance in Gramnegative bacteria attributable to the chromosomal fosA gene. mBio. 2017;8(4):e00749-17.
DOI: 10.1128/mBio.00749-17
-
129.
Xu Q., Jiang J., Zhu Z., Xu T., Sheng Z. K., Ye M., et al. Efflux Pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. Int J Antimicrob Agents. 2019;54(2):223-227.
DOI: 10.1016/j.ijantimicag.2019.06.004
-
130.
Soge O.O., Adeniyi B.A., Roberts M.C. New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J Antimicrob Chemother. 2006;58(5):1048-1053.
DOI: 10.1093/jac/dkl370
-
131.
Tang Y., Shen P., Liang W., Jin J., Jiang X. A putative multireplicon plasmid co-harboring beta-lactamase genes blaKPC-2, blaCTX-M-14 and blaTEM-1 and trimethoprim resistance gene dfrA25 from a Klebsiella pneumoniae sequence type (ST) 11 strain in China. PLoS One. 2017;12(2):e0171339.
DOI: 10.1371/journal.pone.0171339
-
132.
Nishida S., Ono Y. Genomic analysis of a pan-resistant Klebsiella pneumoniae sequence type 11 identified in Japan in 2016. Int J Antimicrob Agents. 2019 Nov 23:105854.
DOI: 10.1016/j.ijantimicag.2019.11.011
-
133.
Liu Y.Y., Wang Y., Walsh T.R., Yi L.X., Zhang R., Spencer J., et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161168.
DOI: 10.1016/S1473-3099(15)00424-7
-
134.
Tchebotar I.V., Mayanskiy A.N., Mayanskiy N.A. Matrix of microbial biofilms. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2016;18(1):9-19. Russian. (Чеботарь И.В., Маянский А.Н., Маянский Н.А. Матрикс микробных биопленок. Клиническая микробиология и антимикробная химиотерапия. 2016;18(1):9-19.)
-
135.
Anderl J.N., Franklin M.J., Stewart P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44(7):1818-1824.
DOI: 10.1128/aac.44.7.18181824.2000
-
136.
Singla S., Harjai K., Chhibber S. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot. 2013;66(2):61-66.
DOI: 10.1038/ja.2012.101
-
137.
Carpenter J.L. Klebsiella pulmonary infections: occurrence at one medical center and review. Rev Infect Dis. 1990;12(4):672-682.
DOI: 10.1093/clinids/12.4.672
-
138.
Reid J.M., Barclay R.S., Stevenson J.G., Welsh T.M., McSwan N. Empyema due to Klebsiella pneumoniae. Thorax. 1967;22(2):170-175.
DOI: 10.1136/thx.22.2.170
-
139.
Yeh C.F., Li W.Y., Hsu Y.B. Klebsiella pneumoniae pharyngitis mimicking malignancy: a diagnostic dilemma. Infection. 2014;42(6):1047-1050.
DOI: 10.1007/s15010-014-0643-z
-
140.
Flores-Mireles A.L., Walker J.N., Caparon M., Hultgren S.J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269284.
DOI: 10.1038/nrmicro3432
-
141.
Hyun M., Lee J.Y., Kim H.A., Ryu S.Y. Comparison of Escherichia coli and Klebsiella pneumoniae acute pyelonephritis in korean patients. Infect Chemother. 2019;51(2):130-141.
DOI: 10.3947/ic.2019.51.2.130
-
142.
Daikos G.L., Markogiannakis A., Souli M., Tzouvelekis L.S. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae: a clinical perspective. Expert Rev Anti Infect Ther. 2012;10(12):1393-1404.
DOI: 10.1586/eri.12.138
-
143.
Tumbarello M., Spanu T., Sanguinetti M., Citton R., Montuori E., Leone F., et al. Bloodstream infections caused by extendedspectrum-β-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother. 2006;50(2):498-504.
DOI: 10.1128/AAC.50.2.498-504.2006
-
144.
Holland C.W. Friedlander’s bacillus meningitis. Can Med Assoc J. 1950;63(2):131-134.
-
145.
Bakar B., Sungur C., Tekkok I.H. Bilateral chronic subdural hematoma contaminated with Klebsiella pneumoniae: an unusual case. J Korean Neurosurg Soc. 2009;45(6):397-400.
DOI: 10.3340/jkns.2009.45.6.397
-
146.
Liliang P.C., Lin Y.C., Su T.M., Rau C.S., Lu C.H., Chang W.N., et al. Klebsiella brain abscess in adults. Infection. 2001;29(2):8186.
DOI: 10.1007/s15010-001-0069-2
-
147.
Wang B., Zhang P., Li Y., Wang Y. Klebsiella pneumoniaeinduced multiple invasive abscesses: A case report and literature review. Medicine. 2019;98(39):e17362.
DOI: 10.1097/MD.0000000000017362
-
148.
Jun J.B. Klebsiella pneumoniae liver abscess. Infect Chemother. 2018;50(3):210-218.
DOI: 10.3947/ic.2018.50.3.210
-
149.
Tugal D., Lynch M., Hujer A.M., Rudin S., Perez F., Bonomo R.A. Multi-drug-resistant Klebsiella pneumoniae pancreatitis: a new challenge in a serious surgical infection. Surg Infect (Larchmt). 2015;16(2):188-193.
DOI: 10.1089/sur.2012.175
-
150.
Virgilio E., Castaldo P., Catta F., Tarantino G., Cavallini M. Abdominal surgical site infection due to Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Int Wound J. 2016;13(5):1075-1076.
DOI: 10.1111/iwj.12528
-
151.
Krapp F., Morris A.R., Ozer E.A., Hauser A.R. Virulence characteristics of carbapenem-resistant Klebsiella pneumoniae strains from patients with necrotizing skin and soft tissue infections. Sci Rep. 2017;7(1):13533.
DOI: 10.1038/s41598017-13524-8
-
152.
Tomczak H., Danczak-Pazdrowska A., Polanska A., OsmolaMankowska A., Pazdrowski J., Blazejewska-Gasior W., et al. Microbiological analysis of acute infections of the nail fold on the basis of bait thread test. Postepy Dermatol Alergol. 2017;34(2):110-115.
DOI: 10.5114/ada.2017.67072
-
153.
de Sanctis J., Teixeira L., van Duin D., Odio C., Hall G., Tomford J.W., et al. Complex prosthetic joint infections due to carbapenemase-producing Klebsiella pneumoniae: a unique challenge in the era of untreatable infections. Int J Infect Dis. 2014;25:73-78.
DOI: 10.1016/j.ijid.2014.01.028
-
154.
Ikeda Y., Shigemura K., Nomi M., Tabata C., Kitagawa K., Arakawa S., et al. Infection control following an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated from catheter-associated urinary tract infection. Jpn J Infect Dis. 2018;71(2):158-161.
DOI: 10.7883/yoken.JJID.2017.330
-
155.
Foresti S., Di Bella S., Rovelli A., Sala A., Verna M., Bisi L., et al. Catheter-related bloodstream infection caused by KPC-producing Klebsiella pneumoniae in two pediatric hematological patients. Antimicrob Agents Chemother. 2015;59(12):7919-7920.
DOI: 10.1128/AAC.01855-15
-
156.
Yu W.L., Cheng C.C., Chuang Y.C. First report of acute purulent pericarditis by capsule genotype K1 Klebsiella pneumoniae in an alcoholic patient. Diagn Microbiol Infect Dis. 2009;63(3):346347.
DOI: 10.1016/j.diagmicrobio.2008.12.003
-
157.
Pai R.K., Wall T.S., Macgregor J.F., Abedin M., Freedman R.A. Klebsiella pneumoniae: a rare cause of device-associated endocarditis. Pacing Clin Electrophysiol. 2006;29(5):540-542.
DOI: 10.1111/j.1540-8159.2006.00390.x
-
158.
Yang T.H., Kuo S.T., Young Y.H. Necrotizing external otitis in a patient caused by Klebsiella pneumoniae. Eur Arch Otorhinolaryngol. 2006;263(4):344-346.
DOI: 10.1007/s00405-005-0998-y
-
159.
Ang L.P., Lee H.M., Au Eong K.G., Yap E.Y., Lim A.T. Endogenous Klebsiella endophthalmitis. Eye (Lond). 2000;14(6):855-860.
DOI: 10.1038/eye.2000.236
-
160.
Lin C.T., Tsai Y.Y. Klebsiella pneumoniae orbital cellulitis. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64(9):551-554. PMID: 11768288
-
161.
Walcher D.N. Klebsiella pneumoniae associated with infantile diarrhea. Am J Dis Child. 1949;78(1):61-64.
DOI: 10.1001/archpedi.1949.02030050070004
-
162.
Gregersen N., Van Nierop W., Von Gottberg A., Duse A., Davies V., Cooper P. Klebsiella pneumoniae with extended spectrum beta-lactamase activity associated with a necrotizing enterocolitis outbreak. Pediatr Infect Dis J. 1999;18(11):963967.
DOI: 10.1097/00006454-199911000-00005
-
163.
Gabida M., Gombe N.T., Chemhuru M., Takundwa L., Bangure D., Tshimanga M. Foodborne illness among factory workers, Gweru, Zimbabwe, 2012: a retrospective cohort study. BMC Res Notes. 2015;8:493.
DOI: 10.1186/s13104-015-1512-2
-
164.
Yu W.Y., Zhu K.J., Li Q.P., Lou C., He D.W. Successful medical drainage and surgical treatment for vertebral osteomyelitis and bilateral psoas abscess with gas formation caused by Klebsiella pneumoniae in a diabetic patient. Rev Assoc Med Bras. 2019;65(5):678-681.
DOI: 10.1590/1806-9282.65.5.678
-
165.
Dutt S. N., Kameswaran M. The aetiology and management of atrophic rhinitis. J Laryngol Otol. 2005;119(11):843-852.
DOI: 10.1258/00222150577478337
-
166.
Miller R.H., Shulman J.B., Canalis R.F., Ward P.H. Klebsiella rhinoscleromatis: a clinical and pathogenic enigma. Otolaryngol Head Neck Surg. 1979;87(2):212-221.
DOI: 10.1177/019459987908700211
-
167.
Kuo P.H., Huang K.H., Lee C.W., Lee W.J., Chen S.J., Liu K.L. Emphysematous prostatitis caused by Klebsiella pneumoniae. J Formos Med Assoc. 2007;106(1):74-77.
DOI: 10.1016/S0929-6646(09)60219-9
-
168.
Wakabayashi Y., Jubishi D., Okamoto K., Ikeda M., Tatsuno K., Mizoguchi M., et al. A rare case of a prostatic abscess, bacteremia and chronic granulomatous disease associated with Klebsiella pneumoniae. J Infect Chemother. 2019;25(5):365-367.
DOI: 10.1016/j.jiac.2018.11.015
-
169.
Tsai Y.J., Lin Y.C., Harnnd D.J., Chiang R.P., Wu H.M. A Lemierre syndrome variant caused by Klebsiella pneumoniae. J Formos Med Assoc. 2012;111(7):403-405.
DOI: 10.1016/j.jfma.2012.03.012
-
170.
Luo Y., Wang Y., Ye L., Yang J. Molecular epidemiology and virulence factors of pyogenic liver abscess causing Klebsiella pneumoniae in China. Clin Microbiol Infect. 2014;20(11):O818-O824.
DOI: 10.1111/1469-0691
-
171.
Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., Grimont P. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PloS One. 2009;4(3):e4982.
DOI: 10.1371/journal.pone.0004982
-
172.
Chebotar I.V., Ponomarenko O.A., Lazareva A.V., Karaseva O.V., Gorelik A.L., Bocharova YU.A., et al. MALDI-TOF technique availability for identification of septic agents in pediatric practice. Sovremennye tehnologii v medicine. 2015;7(2):68-74. Russian. (Чеботарь И.В., Пономаренко О.А., Лазарева А.В., Карасева О.В., Горелик А.Л., Бочарова Ю.А. и соавт. Использование MALDI-TOF-технологии для идентификации возбудителей септических состояний в педиатрической практике. Современные технологии в медицине. 2015;7(2):68-74.)
DOI: 10.17691/stm2015.7.2.09
-
173.
Brisse S., Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol. 2001;51:915-924.
DOI: 10.1099/00207713-51-3-915
-
174.
Maatallah M., Vading M., Kabir M.H., Bakhrouf A., Kalin M., Naucler P., et al. Klebsiella variicola is a frequent cause of bloodstream infection in the Stockholm area, and associated with higher mortality compared to K. pneumoniae. PLoS One. 2014;9:e113539.
DOI: 10.1371/journal.pone.0113539
-
175.
Berrazeg M., Diene S.M., Drissi M., Kempf M., Richet H., Landraud L., et al. Biotyping of multidrug-resistant Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. PloS One. 2013;8(4):e61428.
DOI: 10.1371/journal.pone.0061428
-
176.
Rodrigues C., Novais A., Sousa C., Ramos H., Coque T.M., Canton R., et al. Elucidating constraints for differentiation of major human Klebsiella pneumoniae clones using MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2017;36(2):379-386.
DOI: 10.1007/s10096-016-2812-8
-
177.
Rodrigues C., Passet V., Rakotondrasoa A., Brisse, S. Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and related phylogroups by MALDI-TOF mass spectrometry. Front Microbiol. 2018;9:3000.
DOI: 10.3389/fmicb.2018.03000
-
178.
Yanovich Yu.A., Rachina S.A., Sukhorukova M.V., Savochkina Yu.A., Vatsik M.V., Petrov A.A. Hospital-acquired pneumonia in adults: the structure of pathogens and new features of etiological diagnosis. Farmateka. 2019;26(5):39-46. Russian. (Янович Ю.А., Рачина С.А., Сухорукова М.В., Савочкина Ю.А., Вацик М.В., Петров А.А. Нозокомиальная пневмония у взрослых: структура возбудителей и новые возможности этиологической диагностики. Фарматека. 2019;26(5):39-46.)
DOI: 10.18565/pharmateca.2019.539-46
-
179.
Goering R.V. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol. 2010;10(7):866-875.
DOI: 10.1016/j.meegid.2010.07.023.