Аннотация
Обзор литературы посвящён обобщению информации, касающейся системообразующего атрибута микробных биоплёнок — внеклеточного матрикса. Проанализированы структурно-биохимические характеристики матрикса, формируемого актуальными видами патогенов. Детально описаны функции матрикса, включая его патогенетическую значимость в эволюции инфекционного процесса. Матрикс рассматривается в качестве индикатора биоплёночного процесса и имеет диагностическую ценность. В связи с этим в обзоре концентрируется внимание на методах обнаружения и изучения матрикса. Предложены фармацевтические и немедикаментозные пути контроля патогенетически значимых биоплёнок через дезорганизацию их матрикса. Обсуждается возможность использования матриксных структур в качестве компонентов вакцинных препаратов.
ФГАУ «Научный центр здоровья детей», Москва, Россия
ГБОУ ВПО НижГМА Минздрава России, Нижний Новгород, Россия
ФГАУ «Научный центр здоровья детей», Москва, Россия
-
1.
Donlan R.M., Costerton J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15(2):167-93.
-
2.
Tetz V.V., Korobov V.P., Artemenko N.K., et al. Extracellular phospholipids of isolated bacterial communities. Biofilms 2004; 1(3):149-55.
-
3.
Corrigan R.M., Rigby D., Handley P., Foster T.J. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 2007; 153(6):2435-46.
-
4.
Mack D., Becker P., Chatterjee I., et al. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 2004; 294(2):203-12.
-
5.
Cucarella C., Solano C., Valle J., et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 2001; 183(9):2888-96
-
6.
Mann E.E., Rice K.C., et al. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PloS one 2009; 4(6):e5822.
-
7.
Маянский А.Н., Чеботарь И.В. Стафилококковые биопленки: структура, регуляция, отторжение. Журн микробиол 2011; 1:101-8.
-
8.
Merino N., Toledo-Arana A., Vergara-Irigaray M., et al. Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 2009; 191(3):832-43.
-
9.
Rohde H., Burdelski C., Bartscht K., et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation associated protein by staphylococcal and host proteases. Mol Microbiol 2005; 55(6):1883-95.
-
10.
Decker R., Burdelski C., Zobiak M., et al. An 18 kDa scaffold protein is critical for Staphylococcus epidermidis biofilm formation. PLoS pathogens 2015; 11 (3):e1004735.
-
11.
Izano E.A., Amarante M.A., Kher W.B., Kaplan J.B. Differential roles of poly-n-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis. Appl Environ Microdiol 2008; 74(2):470-6.
-
12.
Tendolkar P.M., Baghdayan A.S., Shankar N. The N-terminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis. J Bacteriol 2005; 187 (17):6213-22.
-
13.
Barnes A.M., Ballering K.S., Leibman R.S., Wells C.L., Dunny G.M. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio 2012; 3(4):e00193-12.
-
14.
Маянский А.Н., Чеботарь И.В., Руднева Е.И., Чистякова В.П. Pseudomonas aeruginosa: характеристика биопленочного процесса. Мол генетика микробиол вирусол 2012; 1:3-8.
-
15.
Ryder C., Byrd M., Wozniak D.J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Оpin Microbiol 2007; 10(6):644-8.
-
16.
Starkey M., Hickman J.H., et al. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 2009; 191(11):3492-503.
-
17.
Mulcahy H., Charron-Mazenod L., Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS pathogens 2008; 4(11); e1000213.
-
18.
Choi A.H., Slamti L., Avci F.Y., Pier G.B., MairaLitran T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 2009; 191:5953-63.
-
19.
Чеботарь И.В., Лазарева А.В., Масалов Я.К., Михайлович В.М., Маянский Н.А. Acinetobacter: микробиологические, патогенетические и резистентные свойства. Вестник РАМН 2014; 9-10:39-50.
-
20.
Sahu P.K., Iyer P.S., Oak A.M., Pardesi K.R., Chopade B.A. Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation. The Scientific World J 2012; 2012:973436.
-
21.
Cerca N., Jefferson K.K. Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 2008; 283(1):36-41.
-
22.
Laverty G., Gorman S.P., Gilmore B.F. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 2014; 3(3):596-632.
-
23.
Chen K.M., Chiang M.K., Wang M., et al. The role of pgaC in Klebsiella pneumoniae virulence and biofilm formation. Microb pathog 2014; 77:89-99.
-
24.
Mathé L., Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr genetics 2013; 59 (4):251-64.
-
25.
Martins M., Uppuluri P., Thomas D.P., et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopatholog 2010; 169(5):323-31.
-
26.
Boyle K.E., Heilmann S., van Ditmarsch D., Xavier J.B. Exploiting social evolution in biofilms. Curr Оpin Microbiol 2013; 16(2):207-12.
-
27.
Hengzhuang W., Ciofu O., Yang L., et al. High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob Аgents Сhemother 2013; 57(1):196-204.
-
28.
Чеботарь И.В., Маянский А.Н., Кончакова Е.Д., Лазарева А.В., Чистякова В.П. Антибиотикорезистентность биопленочных бактерий. Клиническая Микробиология и Антимикробная Химиотерапия 2012; 14(1):51-8.
-
29.
Farber B.F., Kaplan M.H., Clogston A.G. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis 1990; 161(1):37-40.
-
30.
Dunne W.M. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002; 15 (2):155-66.
-
31.
Chen J., Lee S.M., Mao Y. Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. Int J Food Microbiol 2004; 93:281-6.
-
32.
Burne R.A., Chen Y.Y., Wexler D.L., Kuramitsu H., Bowen W.H. Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res 1996; 75(8):1572-7.
-
33.
Kaplan J.B. Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 2009; 32 (9):545-54.
-
34.
Ramasubbu N., Thomas L.M., Ragunath C., Kaplan J.B. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol 2005; 349(3):475-86.
-
35.
Arciola C.R., Montanaro L., Costerton J.W. New trends in diagnosis and control strategies for implant infections. Int J Artif Organs 2011; 34(9):727-36.
-
36.
Parise G., Mishra M., Itoh Y., Romeo T., Deora R. Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol 2007; 189(3):750-60.
-
37.
Donelli G., Francolini I., Romoli D., et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Аgents Сhemother 2007; 51(8):2733-40.
-
38.
Kaplan J.B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 2010; 89(3):205-18.
-
39.
Cushing I.E., Miller W.F. Nebulization therapy. Clin Аnesth 1964; 1:169-218.
-
40.
Frank K.L., Patel R. Poly-N-Acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun 2007; 75(10):4728-42.
-
41.
Izano E.A., Wang H., Ragunath C., Ramasubbu N., Kaplan J.B. Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin B and SDS. J Dent Res 2007; 86(7):618-22.
-
42.
Wang B.Y., Hong J., Ciancio S.G., Zhao T., Doyle M.P. A novel formulation effective in killing oral biofilm bacteria. J Int Acad Periodontol 2012; 14(3):56-61.
-
43.
Toutain-Kidd C.M., Kadiva, S.C., Bramante C.T., Bobin S.A., Zegans M.E. Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Аgents Сhemother 2009; 53(1):136-45.
-
44.
Zegans M.E., Wozniak D., Griffin E., et al. Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Аgents Сhemother 2012; 56(8):4112-22.
-
45.
Sharma M., Visai L., Bragheri F., et al. Toluidine bluemediated photodynamic effects on staphylococcal biofilms. Antimicrob Аgents Сhemother 2008; 52(1):299- 305.
-
46.
Cotter J.J., Maguire P., Soberon F., et al. Disinfection of meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote nonthermal gas plasma. J Hosp Infect 2011; 78(3):204-7.
-
47.
Маянский А.Н., Чеботарь И.В. Стратегия управления бактериальным биопленочным процессом. Журнал инфектологии 2012; 4(3):5-13.
-
48.
Schwandt L.Q., Weissenbruch R.V., Stokroos I., et al. Prevention of biofilm formation by dairy products and N-acetylcysteine on voice prostheses in an artificial throat. Acta Otolaryngol 2004; 124(6):726-31.
-
49.
Dinicola S., De Grazia S., Carlomagno G., Pintucci J.P. N-acetylcysteine as powerful molecule to destroy bacterial biofilms. A systematic review. Eur Rev Med Pharmacol Sci 2014; 18(19):2942-8.
-
50.
Francolini I., Norris P., Piozzi A., Donelli G., Stoodley P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 2004; 48(11):4360-5.
-
51.
Чеботарь И.В., Гурьев Е.Л. Лабораторная диагностика клинически значимых биоплёночных процессов. Вопр диагностики в педиатрии 2012; 4:15-20.
-
52.
Marrie T.J., Nelligan J., Costerton J.W. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 1982; 66:1339- 41.
-
53.
Behmlander R.M., Dworkin M. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 1994; 176(20):6295-303.
-
54.
Black W.P., Yang Z. Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 2004; 186(4):1001-8.
-
55.
Hansen U., Hussain M., Villone D., et al. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules. Matrix Biol 2006; 25:252- 60.
-
56.
Flemming H.C., Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9):623-33.
-
57.
Montanaro L., Poggi A., Visai L., et al. Extracellular DNA in biofilms. Int J Artif Organs 2011; 34(9):824-31.
-
58.
Sandt C., Smith-Palmer T., Pink J., Brennan L., Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol 2007; 103(5):1808-20.
-
59.
Ivleva N.P., Wagner M., Horn H., Niessner R., Haisch C. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal Bioanal Chem 2009; 393(1):197-206.
-
60.
Leriche V., Sibille P., Carpentier B. Use of an enzymelinked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl Environ Microbiol 2000; 66(5):1851-6.
-
61.
Mack D., Fischer W., Krokotsch A., et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 1996; 178(1):175-83.
-
62.
Gad G.F., El-Feky M.A., El-Rehewy M.S., et al. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries 2009; 3(5):342-51.
-
63.
Lin M.H., Shu J.C., Lin L.P., et al. Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis. PloS one 2015; 10(4):e0124216.
-
64.
Costa A.R., Henriques M., Oliveira R., Azeredo J. The role of polysaccharide intercellular adhesin (PIA) in Staphylococcus epidermidis adhesion to host tissues and subsequent antibiotic tolerance. Eur J Clin Microbiol Infect Dis 2009; 28(6):623-9.
-
65.
Brossard K.A., Campagnari A.A. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 2012; 80(1):228-33.
-
66.
Das T., Sharma P.K., Busscher H.J., van der Mei H.C., Krom B.P. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 2010; 76(10):3405-8.
-
67.
Macintosh R.L., Brittan J.L., Bhattacharya R., et al. The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 2009; 191(22):7007-16.
-
68.
Byrd M.S., Pang B., Mishra M., Swords W.E., Wozniak D.J. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-κB activation in A549 cells. MBio 2010; 1(3):e00140-10.
-
69.
Latasa C., Roux A., Toledo-Arana A., et al. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 2005; 58(5):1322-39.
-
70.
Wingender J., Flemming H.C. The biofilm matrix. Nat Rev Microbiol 2010; 13:623-33.
-
71.
Toyofuku M., Roschitzki B., Riedel K., Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 2012; 11(10):4906-15.
-
72.
Gil C., Solano C., Burgui S., et al. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infec Immun 2014; 82(3):1017-29.
-
73.
Kropec A., Maira-Litran T., Jefferson K.K., et al. Poly-Nacetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun 2005; 73(10):6868-76.
-
74.
Fredheim E.G., Granslo H.N., Flægstad T., et al. Staphylococcus epidermidis polysaccharide intercellular adhesin activates complement. FEMS Immunol Med Microbiol 2011; 63(2):269-80.
-
75.
Venketaraman V., Lin A.K., Le A., et al. Both leukotoxin and poly-N-acetylglucosamine surface polysaccharide protect Aggregatibacter actinomycetemcomitans cells from macrophage killing. Microb Pathog 2008; 45(3):173-80.
-
76.
Vuong C., Voyich J.M., Fischer E.R., et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 2004; 6(3):269-75.
-
77.
Steinberg D., Poran S., Shapira L. The effect of extracellular polysaccharides from Streptococcus mutans on the bactericidal activity of human neutrophils. Arch Oral Biol 1999; 44(5):437-44.
-
78.
Leid J.G., Willson C.J., Shirtliff M.E., et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005; 175(11):7512-8.
-
79.
Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 1991; 30(2):201-5
-
80.
Hansch G.M., Brenner-Weiss G., Prior B., Wagner C., Obst U. The extracellular polymer substance of Pseudomonas aeruginosa: too slippery for neutrophils to migrate on? Int J Artif Organs 2008; 31(9):796-803.
-
81.
Jensen E.T., Kharazmi A., Garred P., et al. Complement activation by Pseudomonas aeruginosa biofilms. Microb Pathog 1993; 15(5):377-88.
-
82.
Pier G.B. Vaccine potential of Pseudomonas aeruginosa mucoid exopolysaccharide (alginate). Antibiot Chemother 1991; 44:136-42.
-
83.
Sarei F., Dounighi N.M., Zolfagharian H., Khaki P., Bidhendi S.M. Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 2013; 75(4):442-9.
-
84.
Biswas S., Chattopadhyay M., Sen K.K., Saha M.K. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 2015; 121:403-10.
-
85.
Arciola C.R., Campoccia D., Ravaioli S., Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5:7.
-
86.
de Gouw D., Serra D.O., de Jonge M.I., et al. The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins. Emerg Microbes Infect 2014; 3(8):e58.
-
87.
Pier G.B., DesJardin D., Grout M., et al. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine. Infect Immun 1994; 62(9):3972-9.
-
88.
Stanislavsky E.S., Lam J.S. Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol Rev 1997; 21(3):243-77.
-
89.
Theilacker C., Coleman F.T., Mueschenborn S., et al. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect Immun 2003; 71(7):3875-84.