Аннотация
В обзоре представлен современный взгляд на персистирующие клетки микроорганизмов — специализированные формы покоящихся клеток, которые формируются в популяциях бактерий и грибов при прекращении их роста. Персистеры присутствуют не только в планктонных популяциях, но и в микробных биоплёнках. Для персистеров характерна толерантность к широкому кругу антибактериальных препаратов, они устойчивы к стрессовым воздействиям. С наличием персистирующих клеток связывают хроническое течение многих заболеваний, не поддающихся стандартным методам лечения. В обзоре обсуждаются возможные методы снижения численности персистеров вплоть до полной их эрадикации.
-
1.
Bigger J.W. Treatment of staphylococcal infections with penicillin by intermittent. Lancet 1944; 244:497-500.
-
2.
Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001; 45:999-1007.
-
3.
Moyed H.S., Bertrand K.P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 1983; 155:768-75.
-
4.
Moyed H.S., Broderick S.H. Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 1986; 166:399-403.
-
5.
Black D.S., Kelly A.J., Mardis M.J., Moyed H.S. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 1991; 173:5732-9.
-
6.
Black D.S., Irwin B., Moyed H.S. Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 1994; 176:4081-91.
-
7.
Jayaraman R. Bacterial persistence: some new insights into an old phenomenon. J Biosci 2008; 33:795-805.
-
8.
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318-22.
-
9.
Lewis K. Persister cells. Annu Rev Microbiol 2010; 64:357-72.
-
10.
Walters M.C. 3rd, Roe F., Bugnicourt A., Franklin M.J., Stewart P.S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003; 47:317- 23.
-
11.
Mulcahy L.R., Burns J.L., Lory S., Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 2010; 192:6191-9.
-
12.
Wolfson J.S., Hooper D.C., McHugh G.L., et al. Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob Agents Chemother 1990; 34:1938-43.
-
13.
Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135-8.
-
14.
Brooun A., Liu S., Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000; 44:640-6.
-
15.
Spoering A.L., Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 2001; 183:6746-51.
-
16.
Zeller H.J., Voigt W.H. Efficacy of ciprofloxacin in stationary phase bacteria in vitro. Am J Med 1987; 82:87-90.
-
17.
Keren I., Kaldalu N., Spoering A., et al. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 2004; 230:13-8.
-
18.
Shah D, Zhang Z., Rhodursky A., et al. Persisters: a distinct physiological state of E.coli. BMC Microbiology 2006; 6:53.
-
19.
Barry C.E. 3rd, Boshoff H.I,. Dartois V., et al. The spectrum of latent tuberculosis:rethinking the biology and intervention strategies. Nat Rev Microbiol 2009; 7:845-55.
-
20.
LaFleur M.D., Kumamoto C.A., Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 2006; 50:3839-46.
-
21.
Al-Dhaheri R.S., Douglas L.J. Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob Agents Chemother 2008; 52:1884-7.
-
22.
Lewis K., Spoering A., Kaldalu N., Keren I., Shah D. Persisters: specialized cells responsible for .biofilm tolerance to antimicrobial agents. In: Pace J., Rupp M.E., Finch R.G., editors. Biofilms, infection, and antimicrobial therapy. Boca Raton, FL: Taylor & Francis.; 2005. p. 241-56.
-
23.
Alix E., Blanc-Potard A. Hydrophobic peptides: novel regulators within bacterial membranes. Mol Microbiol 2009; 72:5-11.
-
24.
Avery S.V. Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 2006; 4:577-87.
-
25.
Balaban N. Q., Merrin J., Chait R., et al. Bacterial persistence as a phenotypic switch. Science 2004; 305:1622-5.
-
26.
Anderl J.N., Zahller E., Roe F., Stewart P.S. Role of nutrient limitation and stationary phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2003; 47:1251-6.
-
27.
Lee S.W., Foley E.J., Epstein J.A. Mode of action of penicillin I. Bacterial growth and penicillin activity - Staphylococus aureus FDA. J Bacteriol 1944; 48:393-9.
-
28.
Trumanen E., Cozens R., Tosch W., et al. The rate of killing of E. coli by β-lactam antibiotics is strictly proportional to the bacterial growth. J Gen Microbiol 1986; 132:1297-304.
-
29.
Levin B.R., Rozen D.E. Noninherited antibiotic resistance. Nat Rev Microbiol 2006; 4:556-62.
-
30.
Davis B.D., Chen L.L., Tai P.C. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci USA 1986; 83:6164-8.
-
31.
Hooper D. Mechanism of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 2001; 32 (Suppl 1): S9-15.
-
32.
Kohanski M.A., Dwyer D.J., Hayete B., et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007; 130:797-810.
-
33.
Gefen O., Balaban N.Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 2009; 33:704-17.
-
34.
Hansen S., Lewis K., Vulic M. The role of global regulators and nucleotide metabolism in antibiotic tolerance in E. coli. Antimicrob Agents Chemother 2008; 52:2718-26.
-
35.
Gerdes K., Christensen S.K., Lobner-Olessen A. Prokaryotic toxin-antitoxin stress response loci. Nature Rev Microbiol 2005; 3:371-82.
-
36.
Christensen S.K., Mikkelson M., Pedersen K., Gerdes K. RelE, a global inhibitor of translation is activated during nutritional stress. Proc Natl Acad Sci USA 2001; 98:14328-33.
-
37.
Gerdes K. Toxin – antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 2000; 182:561-72.
-
38.
Lechner S., Lewis K., Bertram R. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol 2012; 22:235-44.
-
39.
Singh R., Ray P., Das A., Sharma M. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 2009; 58:1067-73.
-
40.
Jayaraman R. Modulation of allere leakiness and adaptive mutability in Escherichia coli. J Genet 2000; 79:55-60.
-
41.
Kussell E., Kishony R., Balaban N.Q., Leibler S. Bacterial persistence: a model of survival in changing environments. Genetics 2005; 169:1807-14.
-
42.
Kussell E., Leibler S. Phenotypic diversity, population growth and information in fluctuating environments. Science 2005; 309:2075-8.
-
43.
Suel G.M., Garcia-Ojalvo J., Lieberman L.M., Elowitz M.B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 2006; 440:545-50.
-
44.
Dhar N., McKinney J.D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 2007; 10:30-8.
-
45.
Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol 2012; 211:121-33.
-
46.
Leung V., Leversque C.M. A stress-inducible quorumsensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 2012; 194:2265-74.
-
47.
Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: from natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95-108.
-
48.
DelPozo J., Patel R. The challenge of treating biofilmassociated bacterial infections. Clin Pharmacol Ther 2007; 82:204-9.
-
49.
Dorr T., Vulic M., Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in E. coli. PloS Biology 2010; 8(2):1-8.
-
50.
Periasamy S., Joo H.S., Duong A.C., Bach T.H., et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Nath Acad Sci USA 2012; 109:1281-6.
-
51.
Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5:48-56.
-
52.
Spoering A.L., Vulic M., Lewis K. GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 2006; 188:5136-44.
-
53.
Fu Y., Zhu M., Xing J. Resonant actination: a strategy against bacterial persistence. Phys Biol 2010; 7:16013.