Аннотация
Данная статья представляет собой обзор современных представлений о микробных сообществах и биоплёнках как явлении, имеющем важное клиническое значение. В обзоре подробно рассмотрено строение бактериальной биоплёнки, этапы и механизмы её образования и участвующие в этом процессе гены и факторы. Приведены имеющиеся данные о сигнальных молекулах (аутоиндукторах), обеспечивающих феномен, который получил название «quorum sensing» (чувство кворума). В статье рассмотрены известные и предполагаемые механизмы выживания бактерий в биоплёнках, их защиты от внешних факторов и повышенной резистентности к антимикробным препаратам. Особое внимание уделено описанию потенциальных мишеней, воздействие на которые может приводить к нарушению образования биоплёнки или её разрушению. Приведены исследования по изучению эффектов макролидов и их комбинаций с другими антибиотиками на микробные биоплёнки.
-
1.
Kaufmann S.H.E., Schaible U.E. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends in Microbiology 2005; 13:46975.
-
2.
Jensen P.Ø., Tolker-Nielsen T. Report from Eurobiofilms 2011. Future Microbiol 2011; 6:1237-45.
-
3.
Branda S.S., Vik S., Friedman L., Kolter R. Biofilms: the matrix revisited. Trends Microbiol 2005; 13:20-6.
-
4.
Spoering A.L., Gilmore M.S. Quorum sensing and DNA release in bacterial biofilms. Current Opinion in Microbiology 2006; 9:133-7.
-
5.
Mah T.F., O’Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001; 9:34-9.
-
6.
Leid J.G. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFNgamma-mediated macrophage killing. J Immunol 2005; 175:7512-8.
-
7.
Götz F. Staphylococcus and biofilms. Mol Microbiol 2002; 43:1367-78.
-
8.
O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Annl Rev Microbiol 2000; 54:4979.
-
9.
Prüss B.M. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bact 2006; 188:3731-9.
-
10.
Ren D. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 2004; 64:515-24.
-
11.
Beloin C. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 2004; 51:659-74.
-
12.
Schembri M., Kjaergaard K., Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003; 48:253-67.
-
13.
Waite R.D. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 2006; 7;162.
-
14.
Whiteley M. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001; 413:860-4.
-
15.
Ren D. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechn Bioeng 2004; 86:344-64.
-
16.
Stanley N.R. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 2003; 185:1951-7.
-
17.
Moorthy S., Watnick P.I. Identification of novel stagespecific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 2005; 57:1623-35.
-
18.
Beenken K.E. Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 2004; 186:4665-84.
-
19.
Cho K.H., Caparon M.G. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 2005; 57:1545-56.
-
20.
O’Grady N.P., Alexander M., Dellinger E.P., et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR. Recommendations and reports : мorbidity and mortality weekly report. Recommendations and reports. Centers for Disease Control 2002; 51(RR10):1-29.
-
21.
Watnick P., Kolter R. Biofilm, city of microbes. J Bacteriol 2000; 182:2675-9.
-
22.
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318-22.
-
23.
Zhu J. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proс Nat Acad of Sci USA 2002; 99:3129-34.
-
24.
Irie Y., Mattoo S., Yuk M.H. The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. J Bacteriol 2004; 186:5692-8.
-
25.
Kuchma S.L., Connolly J.P., O’Toole G.A. A threecomponent regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 2005; 187:1441-54.
-
26.
Compans R.W., Cooper M.D. Current Topics in Microbiology and Immunology. Series Editors. Vol. 322; Curr Top Microbiol Immunol.
-
27.
Picioreanu C., van Loosdrecht M.C., Heijnen J.J. Twodimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechn Bioeng 2001; 72:205-18.
-
28.
Barraud N., Hassett D., Hwang S., et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 2006; 188:7344-53.
-
29.
Barraud N., Hassett D., Hwang S., et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 2009; 191:733342.
-
30.
Huang C.T. Spatial patterns of alkaline phosphaase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environm Microbiol 1998; 64:1526-31.
-
31.
Jenal U., Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Ann Rev Genetics 2006; 40:385-407.
-
32.
Heidelberg J.F. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnol 2002; 20:1118-23.
-
33.
Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol mol biol rev: MMBR 2002; 66:373-95.
-
34.
Kaplan J.B. Antibiotic-induced biofilm formation. Int J Artificial Org 2011; 34:737-51.
-
35.
Fuqua W.C., Winans S.C., Greenberg E.P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators. J Bacteriol 1994; 176:269-75.
-
36.
McDougald D., Rice S.A., Kjelleberg S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chemi 2007; 387:445-53.
-
37.
Vendeville A. Making “sense” of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature reviews. Microbiology 2005; 3:383-96.
-
38.
Steinmoen H., Knutsen E., Håvarstein L.S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Nat Acad Sci USA 2002; 99:7681-6.
-
39.
Jesaitis A.J. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 2003; 171:4329-39.
-
40.
Davies D. Understanding biofilm resistance to antibacterial agents. Nature reviews. Drug Discovery 2003; 2:114-22.
-
41.
Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001; 45:999-1007.
-
42.
Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167-93.
-
43.
Høiby N., Frederiksen B., Pressler T. Eradication of early Pseudomonas aeruginosa infection. J of cystic fibrosis: official journal of the European Cystic Fibrosis Society 2005; 4(Suppl 2):49-54.
-
44.
Gibson R.L., Burns J.L., Ramsey B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Resp Crit Care Med 2003; 168:918-51.
-
45.
Chernish R.N., Aaron S.D. Approach to resistant gramnegative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opinion Pulm Med 2003; 9:509-15.
-
46.
Patel R. Biofilms and antimicrobial resistance. Clin Orthopaed Rel Res 2005; 437:41-7.
-
47.
Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135-8.
-
48.
Kaldalu N., Mei R., Lewis K. Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 2004; 48:890-6.
-
49.
Mah T.-F. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426:306-10.
-
50.
Bagge N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175-87.
-
51.
Wozniak D.J., Keyser R. Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 2004; 125 (Suppl.):62S-69S.
-
52.
Tré-Hardy M. Evaluation of long-term co-administration of tobramycin and clarithromycin in a mature biofilm model of cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 2009; 34:370-4.
-
53.
Tré-Hardy M., Nagant C., El Manssouri N., et al. Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model. Antimicrob Agents Chemother 2010; 54:4409-15.
-
54.
Kandemir O., Oztuna V., Milcan A. Clarithromycin destroys biofilms and enhances bactericidal agents in the treatment of Pseudomonas aeruginosa osteomyelitis. Clin Orthopaed Related Research 2005; (430):171-5.
-
55.
Yasuda H., Ajiki Y., Koga T., Kawada H., Yokota T. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 1993; 37:1749-55.
-
56.
Yasuda H. Ajiki Y., Koga T., Yokota T. Interaction between clarithromycin and biofilms formed by Staphylococcus epidermidis. Antimicrob Agents Chemother 1994; 38:138-41.