Аннотация
В последние годы в структуре нозокомиальных инфекций в различных странах мира лидирующее положение занимают грамотрицательные возбудители. Отделения реанимации и интенсивной терапии (ОРИТ) отличаются от других отделений стационаров постоянным контактом пациентов с медицинским персоналом, большим количеством проводимых инвазивных процедур, а также постоянным использованием антимикробных препаратов, что создает условия для селекции штаммов, резистентных к антибиотикам. Одним из наиболее частых возбудителей инфекций в ОРИТ является Escherichia coli. В статье приведены данные многоцентровых эпидемиологических исследований по частоте встречаемости E. coli в качестве возбудителя инфекций кровотока, нозокомиальной пневмонии, инфекций кожи и мягких тканей и др. Подробно представлены современные данные (в том числе российские) по частоте резистентности E. coli к основным классам антимикробных препаратов. Особое внимание уделено данным по распространённости БЛРС-продуцирующих штаммов E. coli и различных типов БЛРС.
-
1.
Vincent J.L. Nosocomial infections in adult intencivecare units. Lancet 2003; 361:2068-77.
-
2.
Stephen J., Mutnick A., Jones R.N. Assessment of pathogens and resistance (R) patterns among intensive care unit (ICU) patients in North America (NA): initial report from the SENTRY Antimicrobial Surveillance Program (2001). Proceedings of the 42nd Interscience Congress of Antimicrobial Agents and Chemotherapy. San Diego, USA. 2002; Abst. C2-297.
-
3.
Escherich T. The intestinal bacteria of the neonate and breast-fed infant. Rev Infect Dis 1989; 11(2):352-6.
-
4.
Conway P.L. Microbial ecology of the human large intestine. In: Gibson G.R. and Macfarlane G.T., eds. Human colonic bacteria: role in nutrition, physiology, and pathology. CRC Press, Boca Raton, FL, 1995; p.1-24
-
5.
Manning S.D., H. Babcock, Heymann D.L. Escherichia coli infections. 2nd ed. Chelsea House, New York, 2010.
-
6.
Hilbert D.V. Uropathogenic Escherichia coli: The PreEminent Urinary Tract Infection Pathogen Nova Science Publishers 2004–2011; p. 1-66.
-
7.
Bopp C.A., Brenner F.W., Fields P.I., et al. Escherichia, Shigella, and Salmonella. In: Murray P.R., Baron E.J. Jorgensen J.H. et al. Clinical Microbiology 8th ed. ASM Press, Washington, 2003; p. 654-71.
-
8.
Baumgart M., Dogan B., Rishniw M., et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. SME J 2007; 1:403-18.
-
9.
Gould L.H., Demma L., Jones T.F., et al. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000-2006. Clin Infect Dis 2009; 49:1480-5.
-
10.
Rubino S, Cappuccinelli P, Kelvin DJ. Escherichia coli (STEC) serotype O104 outbreak causing haemolytic syndrome (HUS) in Germany and France. J Infect Dev Ctries 2011; 5:437-40.
-
11.
Guanche-Garcell H., Requejo-Pino O., Rosenthal V.D., et. al. Device-associated infection rates in adult intensive care units of Cuban university hospitals: International Nosocomial Infection Control Consortium (INICC) findings Int J Infect Dis 2011; 15:e357-62.
-
12.
Arndt S., Lauf H., Weiss G. Spectrum of microbial colonisation and resistance of a surgical ICU in a systematic comparison of the 10-year time period 1996-2005 using routine microbiological testing. Zentralbl Chir 2011; 136:152-8.
-
13.
Luzzaro F., Ortisi G., Larosa M., et al. Prevalence and epidemiology of microbial pathogens causing bloodstream infections: results of the OASIS multicenter study. Diagn Microbiol Infect Dis 2011; 69:363-9.
-
14.
Son J.S., Song J.H., Ko K.S. Bloodstream infections and clinical significance of healthcare-associated bacteremia: a multicenter surveillance study in Korean hospitals. J Korean Med Sci 2010; 25:992-8.
-
15.
Amazian K., Rossello J., Castella A., et al. Prevalence of nosocomial infections in 27 hospitals in the Mediterranean region. East Mediterr Health J 2010; 16:1070-8.
-
16.
Fernandes R., Prudêncio C. Post-surgical wound infections involving Enterobacteriaceae with reduced susceptibility to β-lactams in two Portuguese hospitals. Int Wound J 2010; 7(6):508-14.
-
17.
Jones R.N. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51(Suppl 1):S81-7.
-
18.
Рябкова Е.Л., Иванчик Н.В., Сухорукова М.В. с соавт. Резистентность нозокомиальных штаммов Escherihia coli в стационарах России. Клиническая Микробиология и Антимикробная Химиотерапия 2009; 11:161-9.
-
19.
Ferrández O., Grau S., Saballs P., et al. Mortality risk factors for bloodstream infections caused by extendedspectrum beta-lactamase-producing microorganisms. Rev Clin Esp 2011; 211:119-26.
-
20.
Marlieke E. A. de Kraker, Peter G., et al. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe PLoS Med 2011; 8:e1001-104.
-
21.
Khan F.Y., Elshafie S.S., Almaslamani M., et al. Epidemiology of bacteraemia in Hamad general hospital, Qatar: a one year hospital-based study. Travel Med Infect Dis 2010; 8:377-87.
-
22.
Lubart E., Segal R., Haimov E., et al. Bacteremia in a multilevel geriatric hospital. J Am Med Dir Assoc 2011; 12:204-7.
-
23.
Andriatahina T., Randrianirina F., Hariniana E.R., et al. High prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric unit in Madagascar. BMC Infect Dis 2010; 10:204.
-
24.
Chong Y., Ito Y., Kamimura T. Genetic evolution and clinical impact in extended-spectrum β-lactamaseproducing Escherichia coli and Klebsiella pneumonia. Infect Genet Evol 2011; 11:1499-504.
-
25.
Chong Y., Yakushiji H., Ito Y., et al. Clinical and molecular epidemiology of extended-spectrum β-lactamaseproducing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis 2011; 30:83-7.
-
26.
Mora A., Blanco M., López C., et al. Emergence of clonal groups O1:HNM-D-ST59, O15:H1-D-ST393, O20:H34/ HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42- B1-ST101 among CTX-M-14-producing Escherichia coli clinical isolates in Galicia, northwest Spain. Int J Antimicrob Agents 2011; 37:16-21.
-
27.
Cullen I.M., Manecksha R.P., McCullagh E., et al. The changing pattern of antimicrobial resistance within 42 033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009.BJU Int. 2011 Aug 24. doi: 10.1111/j.1464-410X.2011.10528.x.
-
28.
Bhusal Y., Mihu C.N., Tarrand J.J., et al. Incidence of fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli at a comprehensive cancer center in the United States.Chemotherapy 2011; 57:335-8.
-
29.
Johnson J.R., Johnston B., Clabots C. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010; 51:286-94.
-
30.
Cerquetti M., Giufrè M., García-Fernández A. Ciprofloxacin-resistant, CTX-M-15-producing Escherichia coli ST131 clone in extraintestinal infections in Italy. J Clin Microbiol Infect 2010; 16:1555-8.
-
31.
Yumuk Z., Afacan G., Nicolas-Chanoine M.H., et. al. Turkey: a further country concerned by communityacquired Escherichia coli clone O25-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 62(2):284-8.
-
32.
Platell J.L., Cobbold R.N., Johnson J.R., et al. Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother 2011; 55:3782-7.
-
33.
Watanabe M., Iyobe S., Inoue M., et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35:147-51.
-
34.
Ito H., Arakawa Y., Ohsuka S., et al. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995; 39:824-9.
-
35.
Senda K., Arakawa Y., Nakashima K., et al. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum betalactams, including carbapenems. Antinicrob Agents Chemother 1996; 30:349-53.
-
36.
Senda K., Arakawa Y., Ichiyama S., et al. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol 1996; 34:2909-13.
-
37.
Rossolini G.M. Acquired metallo-beta-lactamases: an increasing clinical threat. Clin Infect Dis 2005; 41(11):1557-8.
-
38.
Walsh T.R. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005; 11(Suppl 6):2-9.
-
39.
Miriagou V., Cornaglia G., Eidelstein M. et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect 2010; 2:112-22.
-
40.
Cendejas E., Gómez-Gil R., Gómez-Sánchez P. Detection and characterization of Enterobacteriaceae producing metallo-beta-lactamases in a tertiary-care hospital in Spain. Clin Microbiol Infect 2010; 16:181-3.
-
41.
Kumarasamy K.K., Toleman M.A., Walsh T.R., et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010; 10:597- 602.