Abstract
The ability to form biofilms in lung tissue destruction cavities has been described for both the causative agent of tuberculosis (Mycobacterium tuberculosis) and for non-tuberculous mycobacteria. This process is associated with the chronic infection. It is assumed that a change in the biology of the pathogen inside the biofilm (formation of an antibiotic-resistant phenotype) makes ineffective standard chemotherapy regimens, which based on the susceptibility test data of mycobacteria in the “free state”. This review describes the biology of mycobacterial biofilms and the main approaches to combat them. Available information suggests that control of mycobacterial biofilm formation is one potential strategy to improve the effectiveness of treatment for tuberculosis and mycobacteriosis.
Ural Research Institute of Phthisiopulmonology, Yekaterinburg, Russia
Ural Research Institute of Phthisiopulmonology, Yekaterinburg, Russia
Ural Research Institute of Phthisiopulmonology, Yekaterinburg, Russia
-
1.
Vasilyeva I.A., Sterlikov S.A., Testov V.V., Mikhailova Yu.V., Obukhova O.V. Ponomarev S.B. Industry and economic indicators of antituberculosis work in 2021-2022. Statistical materials. 2023. p. 59. Russian.
-
2.
Grosset J. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother. 2003;47(3):833-836.
DOI: 10.1128/AAC.47.3.833-836.2003
-
3.
Urbanowski M.E., Ordonez A.A., Ruiz-Bedoya C.A., Jain S.K., Bishai W.R. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect Dis. 2020;20(6):e117-128.
DOI: 10.1016/S1473-3099(20)30148-1
-
4.
Hoff D.R., Ryan G.J., Driver E.R., Ssemakulu C.C., de Groote M.A., Basaraba R.J., et al. Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One. 2011;6(3).
DOI: 10.1371/journal.pone.0017550
-
5.
Lenaerts A., Barry C.E., Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev. 2015;264(1):288-307.
DOI: 10.1111/imr.12252
-
6.
Basaraba R.J., Ojha A.K. Mycobacterial biofilms: revisiting tuberculosis bacilli in extracellular necrotizing lesions. Tuberc Tuber Bacillus Second Ed. 2017;533-539.
DOI: 10.1128/9781555819569.ch24
-
7.
Hawas S., Verderosa A.D., Totsika M. Combination therapies for biofilm inhibition and eradication: a comparative review of laboratory and preclinical studies. Front Cell Infect Microbiol. 2022;12:1-19.
DOI: 10.3389/fcimb.2022.850030
-
8.
Batista S., Fernandez-Pittol M., Nicolás L.S., Martínez D., Rubio M., Garrigo M., et al. In vitro effect of threeantibiotic combinations plus potential antibiofilm agents against biofilm-producing Mycobacterium avium and Mycobacterium intracellulare clinical isolates. Antibiotics. 2023;12(9):1-15.
DOI: 10.3390/antibiotics12091409
-
9.
Costerton J.W., Cheng K.J., Geesey G.G., Ladd T.I., Nickel J.C., Dasgupta M., et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435-464.
DOI: 10.1146/annurev.mi.41.100187.002251
-
10.
Ilyina T.S., Romanova Yu.M. Bacterial biofilms: their role in chronical infection processes and the means to combat them. Molecular genetics, microbiology and virology. 2021;39(2):14-24. Russian.
DOI: 10.17116/molgen20213902114
-
11.
Nikolaev Y.A., Plakunov V.K. Biofilm-»city of microbes» or an analogue of multicellular organisms? Microbiology. 2007;76(2):125-138. Russian.
DOI: 10.1134/S0026261707020014
-
12.
Mukherjee S., Bassler B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17(6):371-382.
DOI: 10.1038/s41579-019-0186-5
-
13.
Rani S.A., Pitts B., Beyenal H., Veluchamy R.A., Lewandowski Z., Davison W.M., et al. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol. 2007;189(11):4223-4233.
DOI: 10.1128/JB.00107-07
-
14.
Vlamakis H., Aguilar C., Losick R., Kolter R.. Control of cell fate by the formation of an architecturally complex bacterial community. Chemtracts. 2007;20(10):427-429.
DOI: 10.1101/gad.1645008.4
-
15.
Xu K.D., Stewart P.S., Xia F., Huang C.T., McFeters G.A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol. 1998;64(10):4035-4039.
DOI: 10.1128/aem.64.10.4035-4039.1998
-
16.
Guilhen C., Forestier C., Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol. 2017;105(2):188-210.
DOI: 10.1111/mmi.13698
-
17.
Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., et al. Bacterial biofilm and associated infections. J Chinese Med Assoc [Internet]. 2018;81(1):7-11.
DOI: 10.1016/j.jcma.2017.07.012
-
18.
Sharma A., Kumar D., Dahiya K., Hawthorne S., Jha S.K., Jha N.K., et al. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine. 2021;16(21):1905-1923.
DOI: 10.2217/nnm-2021-0057
-
19.
Chakraborty P., Bajeli S., Kaushal D., Radotra B.D., Kumar A. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun [Internet]. 2021;12(1).
DOI: 10.1038/s41467-021-21748-6
-
20.
Fennelly K.P., Ojano-Dirain C., Yang Q., Liu L., Lu L., Progulske-Fox A., et al. Biofilm formation by Mycobacterium abscessus in a lung cavity. Am J Respir Crit Care Med. 2016;193(6):692-693.
DOI: 10.1164/rccm.201508-1586IM
-
21.
Muñoz-Egea M.C., Akir A., Esteban J. Mycobacterium biofilms. Biofilm. 2023;5:1-7.
DOI: 10.1016/j.bioflm.2023.100107
-
22.
Keating T., Lethbridge S., Allnutt J.C., Hendon-Dunn C.L., Thomas S.R., Alderwick L.J., et al. Mycobacterium tuberculosis modifies cell wall carbohydrates during biofilm growth with a concomitant reduction in complement activation. Cell Surf [Internet]. 2021;7:100065.
DOI: 10.1016/j.tcsw.2021.100065
-
23.
Ackart D.F., Hascall-dove L., Caceres S.M., Kirk N.M., Brendan K., Melander C., et al. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. 2015;70(3):359-369.
DOI: 10.1111/2049-632X.12144.Expression
-
24.
Kumar A. House of cellulose – a new hideout for drug tolerant Mycobacterium tuberculosis. Microb Cell. 2016;3(7): 299-301.
DOI: 10.15698/mic2016.07.515
-
25.
Ojha A.K., Baughn A.D., Sambandan D., Hsu T., Trivelli X., Guerardel Y., et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol. 2008;69(1):164-174.
DOI: 10.1111/j.1365-2958.2008.06274.x
-
26.
Wu J., Liu W., He L., Huang F., Chen J., Cui P., et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One. 2013;8(12):1-11.
DOI: 10.1371/journal.pone.0083445
-
27.
Gorbacheva V.G. Nonspecific bacterial and fungal infection of the respiratory tract in patients with pulmonary tuberculosis. Materials of the XVI International Burdenkov Scientific Conference April 23-25, 2020. 2020;4:384-386. Russian.
-
28.
Spiridonova L.G., Ten M.B., Labutin I.V., Mezhebovsky V.R. Features of detection of nonspecific microflora and its drug resistance in patients with respiratory tuberculosis . Effective pharmacotherapy. 2019;79:8-11. Russian.
DOI: 10.33978/2307-3586-2019-15-7-8-11
-
29.
Rodríguez-Sevilla G., Crabbé A., García-Coca M., Aguilera-Correa J.J., Esteban J., Pérez-Jorge C. Antimicrobial treatment provides a competitive advantage to mycobacterium abscessus in a dual-species biofilm with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(11):1-7.
DOI: 10.1128/AAC.01547-19
-
30.
Rodríguez-Sevilla G., García-Coca M., Romera-García D., Aguilera-Correa J.J., Mahíllo-Fernández I., Esteban J., et al. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol. 2018;308(3):413-423.
DOI: 10.1016/j.ijmm.2018.03.003
-
31.
Carazo-Fernández L., González-Cortés C., López-Medrano R., Diez-Tascón C., Marcos-Benavides M.F., RiveroLezcano O.M. Mycobacterium avium complex infected cells promote growth of the pathogen Pseudomonas aeruginosa. Microb Pathog. 2022 May:166:105549.
DOI: 10.1016/j.micpath.2022.105549
-
32.
Ogarkov O.B., Badleeva M. V., Bel’kova N.L., Adelshin R.V., Tsyrenova T.A., Khromova P.A., et al. The phenomenon of biofilm formation by Brevibacillus spp. and Bacillus spp. with the Mycobacterium tuberculosis clinical isolates presence. Molekuljarnaja genetika, mikrobiologija i virusologija. 2017;35(3):98-103. Russian.
DOI: 10.18821/0208-0613-2017-35-3-98-103
-
33.
Shleeva M.O., Kondratieva D.A., Kaprelyants A.S. Bacillus licheniformis: a producer of antimicrobial substances, including antimycobacterials, which are feasible for medical applications. Pharmaceutics. 2023;15(7):1-44.
DOI: 10.3390/pharmaceutics15071893
-
34.
Esteban J., García-Coca M. Mycobacterium biofilms. Front Microbiol. 2018;8:1-8.
DOI: 10.3389/fmicb.2017.02651
-
35.
Chakraborty P., Kumar A. The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Microb Cell. 2019;6(2):105-122.
DOI: 10.15698/mic2019.02.667
-
36.
Portell-Buj E., González-Criollo C., López-Gavín A., Fernández-Pittol M., Busquets M.A., Estelrich J., et al. Activity of antibiotics and potential antibiofilm agents against biofilm-producing Mycobacterium aviumintracellulare complex causing chronic pulmonary infections. Antibiotics. 2022;11(5):1-10.
DOI: 10.3390/antibiotics11050589
-
37.
Muñoz-Egea M.-C., García-Pedrazuela M., MahilloFernandez I., Esteban J. Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microb Drug Resist. 2016;22(1):1-6.
DOI: 10.1089/mdr.2015.0124
-
38.
Sharma K., Pagedar Singh A. Antibiofilm effect of DNase against single and mixed species biofilm. Foods. 2018;7(3):1-12.
DOI: 10.3390/foods7030042
-
39.
Deng W., Lei Y., Tang X., Li D., Liang J., Luo J., et al. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol. 2022;12:1-15.
DOI: 10.3389/fcimb.2022.917038
-
40.
Rose S.J., Babrak L.M., Bermudez L.E. Mycobacterium avium possesses extracellular DNA that contributes to biofilm formation, structural integrity, and tolerance to antibiotics. PLoS One. 2015;10(5):1-17.
DOI: 10.1371/journal.pone.0128772
-
41.
Chaddha U., Agrawal A., Feller-Kopman D., Kaul V., Shojaee S., Maldonado F., et al. Use of fibrinolytics and deoxyribonuclease in adult patients with pleural empyema: a consensus statement. Lancet Respir Med. 2021;9(9):1050-1064.
DOI: 10.1016/S2213-2600(20)30533-6
-
42.
Zhang Z., Zhang Y., Yang M., Hu C., Liao H., Li D., et al. Synergistic antibacterial effects of ultrasound combined nanoparticles encapsulated with cellulase and levofloxacin on Bacillus Calmette-Guérin biofilms. Front Microbiol. 2023;14:1-17.
DOI: 10.3389/fmicb.2023.1108064
-
43.
Arias L., Otwombe K., Waja Z., Tukvadze N., Korinteli T., Moloantoa T., et al. SMA-TB: study protocol for the phase 2b randomized double-blind, placebo-controlled trial to estimate the potential efficacy and safety of two repurposed drugs, acetylsalicylic acid and ibuprofen, for use as adjunct therapy added to, and compared with the standard WHO recommended TB regimen. Trials. 2023;24(1):1-16.
DOI: 10.1186/s13063-023-07448-0
-
44.
Kroesen V.M., Gröschel M.I., Martinson N., Zumla A., Maeurer M., van der Werf T.S., et al. Non-steroidal antiinflammatory drugs as host-directed therapy for tuberculosis: a systematic review. Front Immunol. 2017;8:1-9.
DOI: 10.3389/fimmu.2017.00772
-
45.
Vilaplana C., Marzo E., Tapia G., Diaz J., Garcia V., Cardona P.J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis. 2013;208(2):199-202.
DOI: 10.1093/infdis/jit152
-
46.
Ackart D.F., Lindsey E.A., Podell B.K., Melander R.J., Basaraba R.J., Melander Ch. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole based small molecules. Pathog Dis. 2014;70(3):370-378.
DOI: 10.1111/2049-632X.12143
-
47.
Belardinelli J.M., Li W., Martin K.H., Zeiler M.J., Lian E., Avanzi C., et al. 2-aminoimidazoles inhibit Mycobacterium abscessus biofilms in a zinc-dependent manner. Int J Mol Sci. 2022;23(6):2950.
DOI: 10.3390/ijms23062950
-
48.
Nguyen T.V., Minrovic B.M., Melander R.J., Melander C. Identification of novel anti-mycobacterial biofilm agents based upon the 2-aminoimidazole scaffold ChemMedChem. 2019;14(9):927-937.
DOI: 10.1002/cmdc.201900033
-
49.
García-Coca M., Rodríguez-Sevilla G., Pérez-Domingo A., Aguilera-Correa J.J., Esteban J., Muñoz-Egea M.C.. Inhibition of Mycobacterium abscessus, M. chelonae, and M. fortuitum biofilms by Methylobacterium sp. J Antibiot (Tokyo). 2020;73(1):40-47.
DOI: 10.1038/s41429-019-0232-6
-
50.
Rossi G.G., Guterres K.B., Bonez P.C., da Silva Gundel S., Aggertt V.A., Siqueira F.S., et al. Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog. 2017;113:335-341.
DOI: 10.1016/j.micpath.2017.11.002