Abstract
The review presents the current view on the different resistance mechanisms of Staphylococcus aureus to beta-lactams, which are ones of the main antibiotics of choice for the treatment of staphylococcal infections. Currently, there are several mechanisms of resistance such as production of staphylococcal beta-lactamase (blaZ), which provides resistance to penicillins and aminopenicillins. Another one is the presence of an alternative penicillin-binding protein (PBP2a), which is the main marker of methicillinresistant S. aureus (MRSA), virtually providing resistance to all beta-lactams, with the exception of antiMRSA cephalosporins. Mutations in PBP2a contribute to the resistance to ceftaroline and ceftobiprol. Among the MRSA there are few exceptions with regards to the phenotypes called oxacillin-sensitive MRSA (OS-MRSA) which are susceptible to oxacillin despite the presence of the mecA encoding PBP2a. In addition, there are mec-independent pathways of beta-lactam resistance that could be found in S. aureus. In particular, mutations in the gdpP are associated with an increase in the intracellular concentration of c-diAMP messengers that promote resistance to beta-lactams, including anti-MRSA cephalosporins. Mutations in PBP4 or its promoter also contribute to the resistance. The mechanism of resistance to beta-lactams in mec-negative S. aureus (borderline oxacillin-resistant S. aureus, BORSA) is associated with the mutations in PBP1, PBP2, PBP3, and PBP4 or the overexpression of staphylococcal beta-lactamase. This review describes those and other phenotypes, the features of resistance mechanisms, clinical significance, as well as the possibilities for phenotypic detection.
Children Scientific Clinical Center of Infectious Diseases, Saint-Petersburg, Russia
North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia
North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia
Institute of Experimental Medicine, Saint-Petersburg, Russia
Children Scientific Clinical Center of Infectious Diseases, Saint-Petersburg, Russia
North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia
-
1.
Lakhundi S., Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4).
DOI: 10.1128/CMR.00020-18
-
2.
Kirby W.M. Extraction of a Highly potent penicillin inactivator from penicillin resistant Staphylococci. Science. 1944;99(2579):452-453.
DOI: 10.1126/science.99.2579.452
-
3.
Jevons M.P. “Celbenin” – resistant Staphylococci. Br Med J. 1961;1(5219)(14):124-125. PMID: 13697147
-
4.
Acar J.F., Courvalin P., Chabbert Y.A. Methicillin-resistant staphylococcemia: bacteriological failure of treatment with cephalosporins. Antimicrob Agents Chemother (Bethesda). 1970;10:280-285. PMID: 4939735
-
5.
Kuhl S.A., Pattee P.A., Baldwin J.N. Chromosomal map location of the methicillin resistance determinant in Staphylococcus aureus. J Bacteriol. 1978;135(2):460465.
DOI: 10.1128/jb.135.2.460-465.1978
-
6.
Brown D.F.J., Reynolds P.E. Intrinsic resistance to β-lactam antibiotics in Staphylococcus aureus. FEBS Letters. 1980;122(2):275-278.
DOI: 10.1016/00145793(80)80455-8
-
7.
Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929;10(3):226236.
-
8.
Abraham E.P., Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988;10(4):677678. PMID: 3055168
-
9.
Ambler R.P. The structure of beta-lactamases. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 1980;289(1036):321-331.
DOI: 10.1098/rstb.1980.0049
-
10.
Bush K., Bradford P.A. beta-Lactams and beta-Lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016; 6(8):a025247.
DOI: 10.1101/cshperspect.a025247
-
11.
Ba X., Harrison E.M., Lovering A.L., Gleadall N., Zadoks R., Parkhill J., et al. Old drugs to treat resistant bugs: methicillinresistant Staphylococcus aureus isolates with mecC are susceptible to a combination of penicillin and clavulanic acid. Antimicrob Agents Chemother. 2015;59(12):73967404.
DOI: 10.1128/AAC.01469-15
-
12.
Harrison E.M., Ba X., Coll F., Blane B., Restif O., Carvell H., et al. Genomic identification of cryptic susceptibility to penicillins and beta-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat Microbiol. 2019;4(10):1680-1691.
DOI: 10.1038/s41564-0190471-0
-
13.
Voladri R.K., Kernodle D.S. Characterization of a chromosomal gene encoding type B beta-lactamase in phage group II isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 1998;42(12):3163-3168.
DOI: 10.1128/AAC.42.12.3163
-
14.
Voladri R.K., Tummuru M.K., Kernodle D.S. Structure-function relationships among wild-type variants of Staphylococcus aureus beta-lactamase: importance of amino acids 128 and 216. J Bacteriol. 1996;178(24):7248-7253.
DOI: 10.1128/jb.178.24.7248-7253.1996
-
15.
Lenhard J.R., Bulman Z.P. Inoculum effect of beta-lactam antibiotics. J Antimicrob Chemother. 2019;74(10):28252843.
DOI: 10.1093/jac/dkz226
-
16.
Song K.H., Jung S.I., Lee S., Park S., Kiem S.M., Lee S.H., et al. Characteristics of cefazolin inoculum effect-positive methicillin-susceptible Staphylococcus aureus infection in a multicentre bacteraemia cohort. Eur J Clin Microbiol Infect Dis. 2017;36(2):285-294.
DOI: 10.1007/s10096-0162799-1
-
17.
Chong Y.P., Park S.J., Kim E.S., Bang K.M., Kim M.N., Kim S.H., et al. Prevalence of blaZ gene types and the cefazolin inoculum effect among methicillin-susceptible Staphylococcus aureus blood isolates and their association with multilocus sequence types and clinical outcome. Eur J Clin Microbiol Infect Dis. 2015;34(2):349-355.
DOI: 10.1007/s10096-014-2241-5
-
18.
Carvajal L.P., Rincon S., Echeverri A.M., Porras J., Rios R., Ordonez K.M., et al. Novel insights into the classification of staphylococcal beta-lactamases in relation to the cefazolin inoculum effect. Antimicrob Agents Chemother. 2020;64(5).
DOI: 10.1128/AAC.02511-19
-
19.
Kaase M., Lenga S., Friedrich S., Szabados F., Sakinc T., Kleine B., et al. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin Microbiol Infect. 2008;14(6):614-616.
DOI: 10.1111/j.1469-0691.2008.01997.x
-
20.
El Feghaly R.E., Stamm J.E., Fritz S.A., Burnham C.A. Presence of the bla(Z) beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagn Microbiol Infect Dis. 2012;74(4):388-393.
DOI: 10.1016/j.diagmicrobio.2012.07.013
-
21.
Mama O.M., Aspiroz C., Lozano C., Ruiz-Ripa L., Azcona J.M., Seral C., et al. Penicillin susceptibility among invasive MSSA infections: a multicentre study in 16 Spanish hospitals. J Antimicrob Chemother. 2021;76(10):25192527.
DOI: 10.1093/jac/dkab208
-
22.
Henderson A., Harris P., Hartel G., Paterson D., Turnidge J., Davis J.S., et al. Benzylpenicillin versus flucloxacillin for penicillin-susceptible Staphylococcus aureus bloodstream infections from a large retrospective cohort study. Int J Antimicrob Agents. 2019;54(4):491-495.
DOI: 10.1016/j.ijantimicag.2019.05.020
-
23.
Lee A.S., de Lencastre H., Garau J., Kluytmans J., Malhotra-Kumar S., Peschel A., et al. Methicillinresistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033.
DOI: 10.1038/nrdp.2018.33
-
24.
Itani K.M., Merchant S., Lin S.J., Akhras K., Alandete J.C., Hatoum H.T. Outcomes and management costs in patients hospitalized for skin and skin-structure infections. Am J Infect Control. 2011;39(1):42-49.
DOI: 10.1016/j.ajic.2010.03.018
-
25.
Nelson R.E., Samore M.H., Jones M., Greene T., Stevens V.W., Liu C.F., et al. Reducing time-dependent bias in estimates of the attributable cost of health careassociated methicillin-resistant Staphylococcus aureus infections: a comparison of three estimation strategies. Med Care. 2015;53(9):827-834.
DOI: 10.1097/MLR.0000000000000403
-
26.
Becker K., van Alen S., Idelevich E.A., Schleimer N., Seggewiss J., Mellmann A., et al. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis. 2018;24(2):242-248.
DOI: 10.3201/eid2402.171074
-
27.
Garcia-Alvarez L., Holden M.T., Lindsay H., Webb C.R., Brown D.F., Curran M.D., et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595-603.
DOI: 10.1016/S1473-3099(11)70126-8
-
28.
Urushibara N., Aung M.S., Kawaguchiya M., KobayashiN. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J Antimicrob Chemother. 2020;75(1):46-50.
DOI: 10.1093/jac/dkz406
-
29.
Maslanova I., Doskar J., Varga M., Kuntova L., Muzik J., Maluskova D., et al. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep. 2013;5(1):66-73.
DOI: 10.1111/j.1758-2229.2012.00378.x
-
30.
Ray M.D., Boundy S., Archer G.L. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol Microbiol. 2016;100(4):675-685.
DOI: 10.1111/mmi.13340
-
31.
Katayama Y., Zhang H.Z., Hong D., Chambers H.F. Jumping the barrier to beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 2003;185(18):5465-5472.
DOI: 10.1128/JB.185.18.5465-5472.2003
-
32.
Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018;3:124.
DOI: 10.12688/wellcomeopenres.14826.1
-
33.
Sutherland R., Rolinson G.N. Characteristics of methicillinresistant staphylococci. J Bacteriol. 1964;87:887-899.
DOI: 10.1128/jb.87.4.887-899.1964
-
34.
Tomasz A., Nachman S., Leaf H. Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother. 1991;35(1):124-129.
DOI: 10.1128/AAC.35.1.124
-
35.
Pardos de la Gandara M., Borges V., Chung M., Milheirico C., Gomes J.P., de Lencastre H., et al. Genetic Determinants of high-level oxacillin resistance in methicillinresistant Staphylococcus aureus. Antimicrob Agents Chemother. 2018;62(6).
DOI: 10.1128/AAC.00206-18
-
36.
Aiba Y., Katayama Y., Hishinuma T., Murakami-Kuroda H., Cui L., Hiramatsu K. Mutation of RNA polymerase betasubunit gene promotes heterogeneous-to-homogeneous conversion of beta-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(10):4861-4871.
DOI: 10.1128/AAC.0072013
-
37.
Gallagher L.A., Coughlan S., Black N.S., Lalor P., Waters E.M., Wee B., et al. Tandem amplification of the staphylococcal cassette chromosome mec element can drive high-level methicillin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(9).
DOI: 10.1128/AAC.00869-17
-
38.
Giannouli S., Labrou M., Kyritsis A., Ikonomidis A., Pournaras S., Stathopoulos C., et al. Detection of mutations in the FemXAB protein family in oxacillin-susceptible mecApositive Staphylococcus aureus clinical isolates. J Antimicrob Chemother. 2010;65(4):626-633.
DOI: 10.1093/jac/dkq039
-
39.
Jousselin A., Manzano C., Biette A., Reed P., Pinho M.G., Rosato A.E., et al. The Staphylococcus aureus chaperone PrsA is a new auxiliary factor of oxacillin resistance affecting penicillin-binding protein 2A. Antimicrob Agents Chemother. 2015;60(3):1656-1666.
DOI: 10.1128/AAC.02333-15
-
40.
Jousselin A., Renzoni A., Andrey D.O., Monod A., Lew D.P., Kelley W.L. The posttranslocational chaperone lipoprotein PrsA is involved in both glycopeptide and oxacillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(7):3629-3640.
DOI: 10.1128/AAC.06264-11
-
41.
Rahman M.M., Hunter H.N., Prova S., Verma V., Qamar A., Golemi-Kotra D. The Staphylococcus aureus methicillin resistance factor FmtA is a d-Amino esterase that acts on teichoic acids. mBio. 2016;7(1):e02070-02015.
DOI: 10.1128/mBio.02070-15
-
42.
Chatterjee A., Poon R., Chatterjee S.S. Stp1 loss of function promotes beta-Lactam resistance in Staphylococcus aureus that is independent of classical genes. Antimicrob Agents Chemother. 2020;64(6).
DOI: 10.1128/AAC.02222-19
-
43.
Boyle-Vavra S., Yin S., Jo D.S., Montgomery C.P., Daum R.S. VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(1):83-95.
DOI: 10.1128/AAC.01651-12
-
44.
Baek K.T., Grundling A., Mogensen R.G., Thogersen L., Petersen A., Paulander W., et al. beta-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother. 2014;58(8):4593-4603.
DOI: 10.1128/AAC.02802-14
-
45.
Mikkelsen K., Sirisarn W., Alharbi O., Alharbi M., Liu H., Nohr-Meldgaard K., et al. The novel membrane-associated auxiliary factors AuxA and AuxB modulate beta-lactam resistance in MRSA by stabilizing lipoteichoic acids. Int J Antimicrob Agents. 2021;57(3):106283.
DOI: 10.1016/j.ijantimicag.2021.106283
-
46.
Dordel J., Kim C., Chung M., Pardos de la Gandara M., Holden M.T., Parkhill J., et al. Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. mBio. 2014;5(2):e01000.
DOI: 10.1128/mBio.01000-13
-
47.
Campbell C., Fingleton C., Zeden M.S., Bueno E., Gallagher L.A., Shinde D., et al. Accumulation of succinyl coenzyme a perturbs the methicillin-resistant Staphylococcus aureus (MRSA) succinylome and is associated with increased susceptibility to beta-lactam antibiotics. mBio. 2021;12(3):e0053021.
DOI: 10.1128/mBio.00530-21
-
48.
Miragaia M. Factors contributing to the evolution of mecA-mediated beta-lactam resistance in staphylococci: update and new insights from whole genome sequencing (WGS). Front Microbiol. 2018;9:2723.
DOI: 10.3389/fmicb.2018.02723
-
49.
Rolo J., Worning P., Nielsen J.B., Bowden R., Bouchami O., Damborg P., et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec). Antimicrob Agents Chemother. 2017;61(6).
DOI: 10.1128/AAC.02302-16
-
50.
Tsubakishita S., Kuwahara-Arai K., Sasaki T., Hiramatsu K. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother. 2010;54(10):4352-4359.
DOI: 10.1128/AAC.00356-10
-
51.
Archer G.L., Niemeyer D.M. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 1994;2(10):343-347.
DOI: 10.1016/0966-842x(94)90608-4
-
52.
Harrison E.M., Paterson G.K., Holden M.T., Morgan F.J., Larsen A.R., Petersen A., et al. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob Agents Chemother. 2013;57(3):1524-1528.
DOI: 10.1128/AAC.01882-12
-
53.
Tsubakishita S., Kuwahara-Arai K., Baba T., Hiramatsu K. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother. 2010;54(4):1469-1475.
DOI: 10.1128/AAC.00575-09
-
54.
Rolo J., Worning P., Boye Nielsen J., Sobral R., Bowden R., Bouchami O., et al. Evidence for the evolutionary steps leading to mecA-mediated beta-lactam resistance in staphylococci. PLoS genetics. 2017;13(4):e1006674.
DOI: 10.1371/journal.pgen.1006674
-
55.
Becker K., Ballhausen B., Kock R., Kriegeskorte A. Methicillin resistance in Staphylococcus isolates: the "mec alphabet" with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int J Med Microbiol. 2014;304(7):794-804.
DOI: 10.1016/j.ijmm.2014.06.007
-
56.
Harkins C.P., Pichon B., Doumith M., Parkhill J., Westh H., Tomasz A., et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18(1):130.
DOI: 10.1186/s13059-017-1252-9
-
57.
Schwendener S., Cotting K., Perreten V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep. 2017;7:43797.
DOI: 10.1038/srep43797
-
58.
Bignardi G.E., Woodford N., Chapman A., Johnson A.P., Speller D.C. Detection of the mec-A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillinresistance. J Antimicrob Chemother. 1996;37(1):53-63.
DOI: 10.1093/jac/37.1.53
-
59.
Tenover F.C., Tickler I.A. Is that Staphylococcus aureus isolate really methicillin susceptible? Clin Microbiol Newsl. 2015;37(10):79-84.
DOI: 10.1016/j.clinmicnews.2015.04.004
-
60.
Gargis A.S., Yoo B.B., Lonsway D.R., Anderson K., Campbell D., Ewing T.O., et al. Difficult-to-detect Staphylococcus aureus: meca-positive isolates associated with oxacillin and cefoxitin false-susceptible results. J Clin Microbiol. 2020;58(4).
DOI: 10.1128/JCM.02038-19
-
61.
Goering R.V., Swartzendruber E.A., Obradovich A.E., Tickler I.A., Tenover F.C. Emergence of oxacillin resistance in stealth methicillin-resistant Staphylococcus aureus due to mecA sequence instability. Antimicrob Agents Chemother. 2019;63(8).
DOI: 10.1128/AAC.00558-19
-
62.
Liu P., Xue H., Wu Z., Ma J., Zhao X. Effect of bla regulators on the susceptible phenotype and phenotypic conversion for oxacillin-susceptible mecA-positive staphylococcal isolates. J Antimicrob Chemother. 2016;71(8):2105-2112.
DOI: 10.1093/jac/dkw123
-
63.
Biek D., Critchley I.A., Riccobene T.A., Thye D.A. Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. J Antimicrob Chemother. 2010;65(Suppl 4):iv9-16.
DOI: 10.1093/jac/dkq251
-
64.
Cosimi R.A., Beik N., Kubiak D.W., Johnson J.A. Ceftaroline for severe methicillin-resistant Staphylococcus aureus infections: a systematic review. Open Forum Infect Dis. 2017;4(2):ofx084.
DOI: 10.1093/ofid/ofx084
-
65.
Lee H., Yoon E.J., Kim D., Kim J.W., Lee K.J., Kim H.S., et al. Ceftaroline resistance by clone-specific polymorphism in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2018;62(9).
DOI: 10.1128/AAC.00485-18
-
66.
Farrell D.J., Castanheira M., Mendes R.E., Sader H.S., Jones R.N. In vitro activity of ceftaroline against multidrugresistant Staphylococcus aureus and Streptococcus pneumoniae: a review of published studies and the AWARE Surveillance Program (2008-2010). Clin Infect Dis. 2012;55(Suppl 3):S206-214.
DOI: 10.1093/cid/cis563
-
67.
Zhang H., Xu Y., Jia P., Zhu Y., Zhang G., Zhang J., et al. Global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam: a surveillance study from the ATLAS program (2012-2016). Antimicrob Resist Infect Control. 2020;9(1):166.
DOI: 10.1186/s13756-02000829-z
-
68.
Watkins R.R., Holubar M., David M.Z. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother. 2019;63(12):e01216-19.
DOI: 10.1128/AAC.0121619
-
69.
Gostev V., Kalinogorskaya O., Kruglov A., Lobzin Y., Sidorenko S. Characterisation of methicillin-resistant Staphylococcus aureus with reduced susceptibility to ceftaroline collected in Russia during 2010-2014. J Glob Antimicrob Resist. 2018;12:21-23.
DOI: 10.1016/j.jgar.2017.11.013
-
70.
Lahiri S.D., Alm R.A. Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline. J Antimicrob Chemother. 2016;71(1):34-40.
DOI: 10.1093/jac/dkv329
-
71.
Pereira S.F., Henriques A.O., Pinho M.G., de Lencastre H., Tomasz A. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol Microbiol. 2009;72(4):895-904.
DOI: 10.1111/j.13652958.2009.06687.x
-
72.
Leski T.A., Tomasz A. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall crosslinking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol. 2005;187(5):1815-1824.
DOI: 10.1128/JB.187.5.1815-1824.2005
-
73.
Pinho M.G., de Lencastre H., Tomasz A. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J Bacteriol. 2000;182(4):1074-1079.
DOI: 10.1128/JB.182.4.1074-1079.2000
-
74.
da Costa T.M., de Oliveira C.R., Chambers H.F., Chatterjee S.S. PBP4: A new perspective on Staphylococcus aureus beta-lactam resistance. Microorganisms. 2018;6(3).
DOI: 10.3390/microorganisms6030057
-
75.
Gostev V., Sopova J., Kalinogorskaya O., Tsvetkova I., Lobzin Y., Klotchenko S., et al. In vitro ceftaroline resistance selection of methicillin-resistant Staphylococcus aureus involves different genetic pathways. Microb Drug Resist. 2019;25(10):1401-1409.
DOI: 10.1089/mdr.2019.0130
-
76.
Gostev V., Kalinogorskaya O., Ivanova K., Kalisnikova E., Lazareva I., Starkova P., et al. In vitro selection of highlevel beta-lactam resistance in methicillin-susceptible Staphylococcus aureus. Antibiotics. 2021;10(6).
DOI: 10.3390/antibiotics10060637
-
77.
Basuino L., Jousselin A., Alexander J.A.N., Strynadka N.C.J., Pinho M.G., Chambers H.F., et al. PBP4 activity and its overexpression are necessary for PBP4-mediated highlevel beta-lactam resistance. J Antimicrob Chemother. 2018;73(5):1177-1180.
DOI: 10.1093/jac/dkx531
-
78.
Argudin M.A., Dodemont M., Taguemount M., Roisin S., de Mendonca R., Deplano A., et al. In vitro activity of ceftaroline against clinical Staphylococcus aureus isolates collected during a national survey conducted in Belgian hospitals. J Antimicrob Chemother. 2017;72(1):56-59.
DOI: 10.1093/jac/dkw380
-
79.
Argudin M.A., Roisin S., Nienhaus L., Dodemont M., de Mendonca R., Nonhoff C., et al. Genetic diversity among Staphylococcus aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrob Agents Chemother. 2018;62(7).
DOI: 10.1128/AAC.00091-18
-
80.
Hryniewicz M.M., Garbacz K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) – a more common problem than expected? J Med Microbiol. 2017;66(10):13671373.
DOI: 10.1099/jmm.0.000585
-
81.
McDougal L.K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986;23(5):832839.
DOI: 10.1128/jcm.23.5.832-839.1986
-
82.
Jorgensen J.H. Mechanisms of methicillin resistance in Staphylococcus aureus and methods for laboratory detection. Infect Control Hosp Epidemiol. 1991;12(1):1419.
DOI: 10.1086/646233
-
83.
Leahy T.R., Yau Y.C., Atenafu E., Corey M., Ratjen F., Waters V. Epidemiology of borderline oxacillin-resistant Staphylococcus aureus in pediatric cystic fibrosis. Pediatr Pulmonol. 2011;46(5):489-496.
DOI: 10.1002/ppul.21383
-
84.
Balslev U., Bremmelgaard A., Svejgaard E., Havstreym J., Westh H. An outbreak of borderline oxacillin-resistant Staphylococcus aureus (BORSA) in a dermatological unit. Microb Drug Resist. 2005;11(1):78-81.
DOI: 10.1089/mdr.2005.11.78
-
85.
Skinner S., Murray M., Walus T., Karlowsky J.A. Failure of cloxacillin in treatment of a patient with borderline oxacillin-resistant Staphylococcus aureus endocarditis. J Clin Microbiol. 2009;47(3):859-861.
DOI: 10.1128/JCM.00571-08
-
86.
Brennan G.I., Herra C., Coleman D.C., O'Connell B., Shore A.C. Evaluation of commercial chromogenic media for the detection of meticillin-resistant Staphylococcus aureus. J Hosp Infect. 2016;92(3):287-292.
DOI: 10.1016/j.jhin.2015.10.019
-
87.
Yin W., Cai X., Ma H., Zhu L., Zhang Y., Chou S.H., et al. A decade of research on the second messenger c-diAMP. FEMS Microbiol Rev. 2020;44(6):701-724.
DOI: 10.1093/femsre/fuaa019
-
88.
Corrigan R.M., Campeotto I., Jeganathan T., Roelofs K.G., Lee V.T., Grundling A. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A. 2013;110(22):9084-9089.
DOI: 10.1073/pnas.1300595110
-
89.
Corrigan R.M., Abbott J.C., Burhenne H., Kaever V., Grundling A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 2011;7(9):e1002217.
DOI: 10.1371/journal.ppat.1002217
-
90.
Ba X., Kalmar L., Hadjirin N.F., Kerschner H., Apfalter P., Morgan F.J., et al. Truncation of GdpP mediates betalactam resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother. 2019;74(5):1182-1191.
DOI: 10.1093/jac/dkz013
-
91.
Banerjee R., Gretes M., Harlem C., Basuino L., Chambers H.F. A mecA-negative strain of methicillinresistant Staphylococcus aureus with high-level beta-lactam resistance contains mutations in three genes. Antimicrob Agents Chemother. 2010;54(11):4900-4902.
DOI: 10.1128/AAC.00594-10
-
92.
Greninger A.L., Chatterjee S.S., Chan L.C., Hamilton S.M., Chambers H.F., Chiu C.Y. Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifthgeneration cephalosporins reveals potential non-mecA mechanisms of resistance. PloS one. 2016;11(2):e0149541.
DOI: 10.1371/journal.pone.0149541
-
93.
Sommer A., Fuchs S., Layer F., Schaudinn C., Weber R.E., Richard H., et al. Mutations in the gdpP gene are a clinically relevant mechanism for beta-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microb Genom. 2021;7(9).
DOI: 10.1099/mgen.0.000623
-
94.
Dengler V., McCallum N., Kiefer P., Christen P., PatrignaniA., Vorholt J.A., et al. Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PloS One. 2013;8(8):e73512.
DOI: 10.1371/journal.pone.0073512
-
95.
Commichau F.M., Heidemann J.L., Ficner R., Stulke J. Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J Bacteriol. 2019;201(1).
DOI: 10.1128/JB.00462-18
-
96.
Giulieri S.G., Guerillot R., Kwong J.C., Monk I.R., Hayes A.S., Daniel D., et al. Comprehensive genomic investigation of adaptive mutations driving the low-level oxacillin resistance phenotype in Staphylococcus aureus. mBio. 2020;11(6).
DOI: 10.1128/mBio.02882-20
-
97.
Speck S., Wenke C., Fessler A.T., Kacza J., Geber F., Scholtzek A.D., et al. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon. 2020;6(6):e04070.
DOI: 10.1016/j.heliyon.2020.e04070