Abstract
Until now, mutational resistance to fluoroquinolones (FQs) that represent a second-line treatment option for chlamydial infections after macrolides and tetrxacyclines has not been described in clinical isolates of C. trachomatis. However, a possibility of selection of FQ resistance via mutations in the primary target gene, gyrA, has been demonstrated in vitro with C. trachomatis strains. In Russia, FQs are used widely and available over-the-counter thus potentially exerting significant selective pressure for resistance development in STI pathogens. This study aimed to assess the presence of any FQ resistance mutations in quinolone resistance determining regions (QRDRs) of the C. trachomatis gyrA and parC genes directly in clinical samples using a newly developed realtime PCR assay. A total of 1572 C. trachomatis-positive clinical samples, obtained from patients with various urogenital tract infections, and 200 negative samples (used for control of assay specificity) were screened. A single sample revealed the presence of an A/G nucleotide transition in the PCR probe binding site corresponding to the Ser-83/Gly amino acid substitution of in the GyrA QRDR which was confirmed by re-amplification and direct DNA sequencing. We, therefore, report for the first time the identification of a typical FQ resistance mutation in the C. trachomatis gyrA gene from a clinical sample. Results of our study, however, demonstrate that the «classical» resistance mechanisms to FQ are rare in the studied population of C. trachomatis.
-
1.
Somani J., Bhullar V.B., Workowski K.A., Farshy C.E., Black C.M. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis 2000; 181:1421-7.
-
2.
Morrissey I., Salman H., Bakker S., Farrell D., Bebear C.M., Ridgway G. Serial passage of Chlamydia spp. in sub-inhibitory fluoroquinolone concentrations. J Antimicrob Chemother 2002; 49:757-61.
-
3.
Лазарев В.Н., Говорун В.М., Савичева А.М. Анализ точечных мутаций в генах ygeD, gyrA и parC клинических изолятов Chlamydia trachomatis, устойчивых к фторхинолонам. Молекулярная генетика, микробиология и вирусология 2004; (3):3-7.
-
4.
Мисюрина О.Ю. Молекулярно-генетические особенности клинических изолятов Chlamydia trachomatis, in vitro устойчивых к фторхинолонам или макролидам. Дисс. канд. биол. наук. Москва; 2002. 73.
-
5.
Шипицина Е.В. Савичева А.М. Хуснутдинова Т.А. Устойчивость Chlamydia trachomatis к антибиотикам in vitro: методологические аспекты и клиническое значение. Клин микробиол антимикроб химиотер 2004; 6(1):54-64.
-
6.
Shkarupeta M.M., Lazarev V.N., Akopian T.A., et al. Analysis of antibiotic resistance markers in Chlamydia trachomatis clinical isolates obtained after ineffective antibiotic therapy. Bull Exp Biol Med 2007; 143:713-7.
-
7.
Николаева О.Ю. Резистентность к терапии урогенитального хламидиоза: механизмы устойчивости к антибактериальным препаратам. Дисс. канд. биол. наук. Москва; 2004. 83 с.
-
8.
Holmes K., Sparling P., Stamm W., et al. Sexually Transmitted Diseases. 4-th ed. McGraw-Hill Medical; 2008.
-
9.
Lorian V., Ed. Antibiotics in laboratory medicine. 5-th ed. Williams & Willrins; Baltimore; 2005.
-
10.
Ridgway G.L., Bebear C., Bebear C.M., Felmingham D., et al. Sub-committee on susceptibility testing of intracellular and cell-associated pathogens of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Antimicrobial susceptibility testing of intracellular and cell-associated pathogens. EUCAST discussion document E.Dis 6.1 March 2001. Clin Microbiol Infect 2001; 7 (12):1-10.
-
11.
Suchland R.J., Geisler W.M., Stamm W.E. Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp. Antimicrob Agents Chemother 2003; 47 (2):636-42.
-
12.
Эйдельштейн М.В., Алексеев Я.И., Романов А.В. и др. Способ детекции специфических нуклеотидных последовательностей и нуклеотидных замен с помощью ПЦР в режиме реального времени с эффектом гашения флуоресценции зонда праймером. Патент на изобретение № RU 2451086.
-
13.
Lee S.H., Vigliotti V.S., Pappu S. DNA sequencing validation of Chlamydia trachomatis and Neisseria gonorrhoeae nucleic acid tests. Am J Clin Pathol 2008; 129:852-9.
-
14.
Dessus-Babus S., Bebear C.M., Charron A., Bebear C., de Barbeyrac B. Sequencing of gyrase and topoisomerase IV quinolone-resistance-determining regions of Chlamydia trachomatis and characterization of quinolone-resistant mutants obtained in vitro. Antimicrob Agents Chemother 1998; 42:2474-81.
-
15.
Nakata K., Maeda H., Fujii A., Arakawa S., Umezu K., Kamidono S. In vitro and in vivo activities of sparfloxacin, other quinolones, and tetracyclines against Chlamydia trachomatis. Antimicrob Agents Chemother 1992; 36:188-90.
-
16.
Yoshida H., Bogaki M, Nakamura M, Yamanaka L.M., Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother 1991; 35:1647-50.