Abstract
Staphylococcus aureus is known as the leading pathogen in hospital-acquired infections and the most common cause of skin and soft tissues. The present study aimed to test the genetic background of MSSA isolates obtained from pediatric patients and carriers (medical personnel and visitors) during local outbreak of exfoliative dermatitis. S. aureus isolates were analyzed by spa-, MLST-, coa-, SCC mec- и agr-typing, and 11 toxin- encoding genes were tested. All pediatric patient isolates were identical and have characteristics: S. aureus t272 (ST121). The main genomic features of this strain are genes of exfoliative toxins eta and etb, and the enterotoxin gene cluster. The analysis of the genetic structure of the S. aureus t272 (ST121) demonstrates clonal relationship with the strains circulating in France and the difference with the strains circulating in the Far East region. Isolates obtained from medical personnel and visitors divided to 9 S. aureus lineages. One isolate, S. aureus t284 (ST121), belongs to the genetic lineage, which can cause exfoliative dermatitis, but specific exfoliative dermatitis determinants are absent at the same time. The rest were belonging to the 8 genetic variants of S. aureus, which were not detected among strains causing exfoliative dermatitis. Most of the isolates were identified as the known spa types S. aureus: t002 (ST5), t012 (ST30) и t015 (ST45). These genetic lineages are characterized by high-frequency of horizontal virulence gene transfer, which includes SCC mec and toxin genes. All spa type t012 isolates carried toxic shock syndrome toxin gene and some of them carried the gene PantonValentine leukocidin.
-
1.
Lowy F.D. Staphylococcus aureus infections. N Engl J Med 1998; 339(8):520-32.
-
2.
Jarraud S., Mougel C., Thioulouse J., et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups(alleles), and human disease. Infect Immun 2002; 70(2):631-41.
-
3.
Wehrhahn M.C., Robinson J. O., Pascoe E.M., et al. Illness severity in community-onset invasive Staphylococcus aureus infection and the presence of virulence genes. J Infect Dis 2012; 205(12):1840-8.
-
4.
Monecke S., Slickers P., and Ehricht R. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol 2008; 53(2):237-51.
-
5.
Lamand V., Dauwalder O., Tristan A., et al. Epidemiological data of staphylococcal scalded skin syndrome in France from 1997 to 2007 and microbiological characteristics of Staphylococcus aureus associated strains. Clin Microbiol Infect 2012; 18(12):E514-21.
-
6.
Wertheim H.F., Melles D.C., Vos M.C., et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5(12):751-62.
-
7.
МУК № 4.2.1890-04 Методические указания. Определение чувствительности микроорганизмов к антибактериальным препаратам. М., 2004.
-
8.
Hookey J.V., Richardson J.F., Cookson B.D. Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol 1998; 36(4):1083-9.
-
9.
Zhang K., Sparling J., Chow B.L., et al. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol 2004; 42(11):4947-55.
-
10.
Schouls L.M., Spalburg E.C., van Luit M., et al. Multiple-locus variable number tandem repeat analysis of Staphylococcus aureus: comparison with pulsed-field gel electrophoresis and spa-typing. PLoS ONE 2009; 4(4):e5082.
-
11.
Gilot P., Lina G., Cochard T., Poutrel B. Analysis of the genetic variability of genes encoding the RNA IIIactivating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol 2002; 40(11):4060-7.
-
12.
Makgotlho P.E., Kock M.M., Hoosen A., et al. Molecular identification and genotyping of MRSA isolates. FEMS Immunol Med Microbiol 2009; 57(2):104-15.
-
13.
Takano T., Higuchi W., Otsuka T., et al. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 2008; 52(3):837-45.
-
14.
Fei W., Hongjun Y., Hong-bin H., et al. Study on the hemolysin phenotype and the genetype distribution of Staphylococcus aureus caused bovine mastitis in Shandong dairy farms. Intern J Appl Res Vet Med 2011; 9(4):416-21.
-
15.
Mehrotra M., Wang G., Johnson W.M. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 2000; 38(3):1032-35.
-
16.
Xie Y., He Y., Gehring A., et al. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One 2011; 6(12): e28276.
-
17.
Okuma K., Iwakawa K., Turnidge J.D., et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 2002; 40(11):4289-94.
-
18.
Nishifuji K., Sugai M., Amagai M. Staphylococcal exfoliative toxins: «molecular scissors» of bacteria that attack the cutaneous defense barrier in mammals. J Dermatol Sci 2008; 49(1):21-31.
-
19.
Kato F., Kadomoto N., Iwamoto Y, Bunai K., Komatsuzawa H., Sugai M. Regulatory mechanism for exfoliative toxin production in Staphylococcus aureus. Infect Immun 2011; 79(4):1660-70.
-
20.
Nakaminami H., Noguchi N., Ikeda M., et al. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J Med Microbiol 2008; 57(Pt 10):1251-8.
-
21.
Yamaguchi T., Yokota Y., Terajima J., et al. Clonal association of Staphylococcus aureus causing bullous impetigo and the emergence of new methicillin-resistant clonal groups in Kansai district in Japan. J Infect Dis 2002; 185(10):1511-6.
-
22.
Shi D., Higuchi W., Takano T., et al. Bullous impetigo in children infected with methicillin-resistant Staphylococcus aureus alone or in combination with methicillin-susceptible S. aureus: analysis of genetic characteristics, including assessment of exfoliative toxin gene carriage. J Clin Microbiol 2011; 49(5):1972-74.
-
23.
Yamasaki O., Yamaguchi T., Sugai M., et al. Clinical manifestations of staphylococcal scalded-skin syndrome depend on serotypes of exfoliative toxins. J Clin Microbiol 2005; 43(4):1890-3.
-
24.
Enright M. C., Robinson D. A., Randle G., Feil E. J., Grundmann H., Spratt B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus(MRSA). Proc Natl Acad Sci U S A 2002; 99(11):7687-92.
-
25.
Gomes A.R., Westh H., de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother 2006; 50(10):3237-44.