Abstract
Bacterial infections in orthopedic and reconstructive surgery are associated with significant morbidity and poor functional outcomes. Surgical management (excision of infected and devascularized tissues, obliteration of dead space, restoration of blood supply and soft tissue, stabilization and reconstruction of the damaged bone), removal of all foreign bodies, and systemic antimicrobial therapy are three crucial components of the treatment of these infections. A long-term systemic antimicrobial therapy has been considered essential, but may result in adverse reactions. In order to achieve therapeutic drug concentration in the affected area, high systemic doses are generally required which can further worsen toxic effects. Antibiotic treatment may be inadequate or ineffective in patients with poorly vascularized infected tissues and osteonecrosis, which is often present in osteomyelitis. Moreover, normal doses of systemic antibiotics may be insufficient to breach the glycocalyx or biofilm produced by the infecting bacteria. Despite intensive therapy, advances in surgical techniques, and development of new antimicrobials, relapse rate are still significant and treatment of bone and soft tissue infections remain challenging. New methods such as local delivery of antibiotics have evolved in an attempt to improve the in such patients. The use of local antibiotic delivery system has become an accepted treatment method that continues to evolve for a variety of reasons.
-
1.
Lazzarini L., Mader T.T., Calhoun J.H. Osteomyelitis in long bones. J Bone Joint Surgery 2004; 86 (Part 1):2305- 18.
-
2.
Nandi S.K., Munkeherjee P., Ray S., Kundu B., De D.K., Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis. – A review. Materials Science and Engineering 2009; 29:2478-85.
-
3.
El-Husseini M., Patel S., MacFarlane R.J., Haddad F.S. Biodegradable antibiotic delivery systems. J Bone Joint Surgery 2011; 93 (Part 2):151-7.
-
4.
Hanssen A.D., Osmon D.R., Patel R. Local antibiotic delivery systems: what are and where are we going? Clin Orthopaed Rel Res 2005; 437:111-4.
-
5.
Gitelis S., Brebach G.T. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthopaed Surg (Hong-Kong) 2002; 10:53-60.
-
6.
Haddad F.S., Muirhead-Allwood S.K., Manktelow A.R., Bacarese-Hamilton I. Two stage uncemented revision hip arthroplasty for infection. J Bone Joint Surg 2000; 82 (Part 2):689-94.
-
7.
Ruszcak Z., Friess W. Collagen as a carrier for on-site delivery on antibacterial drugs. Advanced Drug Delivery Rev 2003; 55:1679-98.
-
8.
Ozaki T., Yoshitaka T., Kunisada T., Dan’ura T., Naito N., Inoue H. Vancomycinimpregnated polymethylmethacrylate beads for methicillin-resistant Staphylococcus aureus (MRSA) infection: report of two cases. J Orthopaed Science 1998; 3:163-8.
-
9.
Hanssen A.D. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthopaed Relat Res 2005; 437:91-6.
-
10.
Noel S.P., Courtney H., Bumgardner J.D., Haggard W.O. Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthopaed Rel Res 2008; 466:1377-82.
-
11.
Mohanty S.P., Kumar M.N., Murthy N.S. Use of antibiotic-loaded polymethylmethacrylate beads in the management of musculoskeletal sepsis-a retrospective study. J Orthopaed Surg 2003; 11:73-9.
-
12.
Hou T., Xu J., Li Q., Feng J., Zen L. In vitro evaluation of a fibrin gel antibiotic delivery system containing mesenchymal stem cells and vancomycin alginate beads for treating bone infections and facilitating bone formation. Tissue Engineer 2008; 14 (Part 1):1173-82.
-
13.
Mendel V., Simanowski H.J., Scholz H.C., Heymman H. Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats. Arch Orthopaed Trauma Surg 2005; 125:363-8.
-
14.
Koort J.K., Makinen T.J., Suokas E., et al. Sustained release of ciprofloxacin from an osteoconductive poly(DL)-lactide implant. Acta Orthopaed 2008; 79:295-301.
-
15.
Gursel I., Korkusuz F., Turesin F., Alaeddinoglu N.G., Hasirci V. In vivo application of biodegradable controlled antibiotic release system for the treatment of implantrelated osteomyelitis. Biomaterials 2001; 22:73-80.
-
16.
Cevher E., Orhan Z., Mulazimoglu L., et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Intern J Pharmac 2006; 317:127-35.
-
17.
Li X.D., Hu Y.Y. The treatment of osteomyelitis with gentamicin-reconstituted bone xenograft-composite. J Bone Joint Surg 2001; 83 (Part 2):1063-8.
-
18.
Fux C.A., Costerton J.W., Stewart P.S., Stoodley P. Survival strategies of infections biofilm. Trends Microbiology 2005; 13:34-40.
-
19.
Ouedraogo M., Semde R., Some I.T., et al. Monooleinwater liquid crystalline gels of gentamicin as bioresorbable implants for the local treatment of chronic osteomyelitis: in vitro characterization. Drug Develop Industr Pharmacy 2008; 34:753-60.
-
20.
Soundrapandian C., Sa B., Datta S. Organic-inorganic composites for bone drug delivery. AAPS PharmSciTech 2009; 10:1158-71.
-
21.
Rhyu K.H., Jung M.H., Yoo J.J., Seong S.C., Kim H.J. In vitro release of vancomycin from vancomycin-loaded blood coated demineralized bone. Intern Orthopaed 2003; 27:53-5.
-
22.
Engesaeter L.B., Lie S.A., Espehaug B., Furnes O., Vollset S.E., Havelin L.I. Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22170 primary hip replacements followed 0-14 years in the Norwegian Arthroplasty Register. Acta Orthopaed Scandinavica 2003; 74:644-51.
-
23.
Makinen J.T., Veiranto M., Lankinen P., et al. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother 2005; 56:1063-8.
-
24.
Matsuno H., Yudoh K., Hashimoto M., et al. A new antibacterial carrier of hyaluronic acid. J Orthopaed Sci 2006; 11:497-504.
-
25.
Jiranek W.A., Hanssen A.D., Greenwald A.S. Antibioticloaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg 2006; 88 (Part 1):2487- 500.
-
26.
Alonge T.O., Fashing A.N. Ceftriaxone-PMMA beads – a slow release preparation? Intern J Clin Practice 2000; 54:353-5.
-
27.
Shirtliff M.E., Calhoun J.H., Mader J.T. Experimental osteomyelitis treatment with antibiotic-impregnated Hydroxyapatite. Clin Orthopaed Rel Res 2002; 401:239- 47.
-
28.
Chiu F.Y., Chen C.M., Lin C.F., Lo W.H. Cefuroximeimpregnated cement in primary total knee arthroplasty: a prospective randomized study of three hundred and forty knees. J Bone Joint Surg 2002; 84 (Part 1):759-62.
-
29.
Hanssen A.D. Prophylactic use of antibiotic bone cement: an emerging standard-in opposition. J Arthroplasty 2004; 19:759-62.
-
30.
McLaren A.C. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthopaed Rel Res 2004; 427:101-6.
-
31.
Lazarettos J., Efstathopoulos N., Papagelopoulos P.J., et al. A bioresorbable calcium phosphate delivery system with teicoplanin for treating MRSA osteomyelitis. Clin Orthopaed Rel Res 2004; 423:253-8.
-
32.
Tredwell S., Jackson J., Hamilton D., Lee V., Burt H. Use of fibrin sealants for the localized controlled release of cefazolin. Canad J Surg 2006; 49:347-52.
-
33.
Woolverton C.J., Fulton J.A., Salstrom S.J., et al. Tetracycline delivery from fibrin controls peritoneal infection without measurable systemic antibiotic. J Antimicrob Chemother 2001; 48:861-7.