Анализ этиологии нозокомиальных и внебольничных интраабдоминальных инфекций у пациентов ОРИТ многопрофильного стационара

С.А. Зузов, М.М. Петрова, О.И. Кречикова

Смоленская государственная медицинская академия, Смоленск, Россия

Цель. Изучить структуру и антибиотикорезистентность аэробных возбудителей внебольничных осложненных и послеоперационных нозокомиальных интра-абдоминальных инфекций (ИАИ) у пациентов, госпитализированных в отделение реанимации и интенсивной терапии (ОРИТ).

Материалы и методы. В 2 многопрофильных стационарах г. Смоленска было обследовано 168 пациентов с перитонитами, 122 – с внебольничными и 46 – с нозокомиальными. Определение чувствительности выделенных аэробных возбудителей проводилось с помощью метода двойных серийных разведений в агаре в соответствии с рекомендациями CLSI.

Результаты. Этиологически значимые аэробные возбудители были выделены у 61,5% (75/122) пациентов с внебольничными ИАИ и у 89% (41/46) с послеоперационным перитонитом. Наиболее часто и при внебольничных и при нозокомиальных перитонитах выделялись

представители семейства Enterobacteriaceae. Частота выделения неферментирующих грам(-) бактерий (P. aeruginosa и Acinetobacter spp.) и S. aureus была выше у пациентов с нозокомиальными ИАИ. Чувствительность грам(-) возбудителей ко всем протестированным препаратам была значительно выше при внебольничном перитоните. Наибольшую активность против грам(-) микроорганизмов проявляли карбапенемы. Из 9 штаммов S. aureus, выделенных при послеоперационном перитоните, 8 являлись MRSA. Все грам(+) микроорганизмы сохраняли чувствительность к ванкомицину.

Выводы. Исходя из полученных данных, на момент исследования, наиболее потенциально активной терапией послеоперационных перитонитов являлась комбинация карбапенемов с ванкомицином, при внебольничных ИАИ – монотерапия карбапенемами.

Ключевые слова: перитонит, антибактериальная терапия, резистентность.

Etiology and Antimicrobial Resistance of Hospital-acquired and Community-acquired Intra-Abdominal Infections in ICUs of Two Teaching Hospitals

S.A. Zouzov, M.M. Petrova, O.I. Kretchikova

Smolensk State Medical Academy, Smolensk, Russia

Objective. To investigate the etiology and antimicrobial resistance patterns of aerobic bacterial pathogens in community- and hospital-acquired *intra-abdominal*

Контактный адрес: Сергей Анатольевич Зузов Эл. почта: zoman81@mail.ru infections (IAI) in the ICUs of two teaching hospitals in one particular city.

Materials and Methods. A total of 168 patients with peritonitis (122 community-acquired, 46 nosocomial) were included in the study. Susceptibility testing was performed by agar dilution method according to CLSI recommendations.

Results. Clinically significant aerobic pathogens were isolated in 61.5% (75/122) of patients with commu-

nity-acquired and in 89% (41/46) of patients with hospital-acquired peritonitis. The most commonly detected pathogens in both groups were the members of Enterobacteriaceae family. The isolation rates of nonfermenting Gram-negative bacteria (*P. aeruginosa* and *Acinetobacter* spp.) and *S. aureus* were higher in patients with nosocomial peritonitis. Susceptibility of Gram-negative bacteria to all antimicrobials tested was significantly higher than in community-acquired strains. The most in vitro active against Gram-negative pathogens were car-

bapenems. Of 9 *S. aureus* strains isolated in nosocomial peritonitis, 8 were MRSA. All Gram-positive pathogens remain susceptible to vancomycin.

Conclusions. Based on the results of our study, potentially the most active therapy regimens for nosocomial peritonitis was the combination of carbapenems with vancomycin, and for community-acquired peritonitis – monotherapy with carbapenems.

Key words: peritonitis, antimicrobial therapy, resistance.

Введение

Перитонит как осложнение ограниченного (органного) очага инфекции или абдоминального вмешательства относится к тяжелым инфекциям с высоким уровнем летальности [1]. Несмотря на достаточный арсенал антимикробных препаратов (АМП), выбор адекватной антибактериальной терапии (АБТ) остается проблемой неотложной хирургии и интенсивной терапии [2–6]. Среди больных, поступающих в отделения экстренной хирургии, острые воспалительные деструктивные заболевания органов брюшной полости занимают первое место и являются основной причиной развития вторичного перитонита в 80% случаев; послеоперационный перитонит после различных интраабдоминальных вмешательств наблюдается в 20% случаев [7]. Развитие интраабдоминальных осложнений у пациентов, пребывающих в стационаре, обусловлено участием нозокомиальной микрофлоры и, как правило, сопровождается повторными оперативными вмешательствами, удлинением сроков госпитализации, в том числе и в ОРИТ, и длительными курсами АБТ [8]. В то же время пациенты, имеющие сопутствующие заболевания, такие как онкопатология, хроническая алкогольная болезнь, иммуносупрессивные состояния, более подвержены риску послеоперационных осложнений и неблагоприятных исходов [9, 10]. Сроки госпитализации и длительность курсов АБТ также ухудшают исход заболевания [11].

Результаты сравнительных исследований эффективности АМП для стартовой терапии осложненной интраабдоминальной инфекции (ОИАИ) достаточно противоречивы и зависят от времени выполнения исследований [5, 12–14]. Однако предпочтительность применения в терапии абдоминального сепсиса карбапенемов по сравнению с цефалоспоринами была продемонстрирована в достаточно большом количестве исследований [9, 14–16].

Антибиотикорезистентность в настоящее время становится проблемой не только стационаров, но и для внебольничных инфекций, особенно при

их тяжелом течении [17]. Выделение продуцентов бета-лактамаз расширенного спектра (БЛРС) среди представителей Enterobacteriaceae ассоциируется с ростом летальности [18,19] при интраабдоминальных инфекциях более чем в три раза, по сравнению со случаями выделения чувствительных возбудителей [1]. В исследовании, проведенном в 24 стационарах Испании, результатом неадекватной стартовой терапии, по сравнению с адекватной, у пациентов с ОИАИ, явилось достоверное ухудшение исходов (79% vs 26%, p<0,001), которое выражалось в более частом дополнительном назначении АМП, удлинении сроков госпитализации и увеличении числа случаев повторной госпитализации [20].

Как правило, отсроченная адекватная терапия уже не отражается на исходе заболевания. В связи с этим выбор адекватной стартовой терапии, а главное – ее своевременность (до получения результатов микробиологического исследования) достоверно могут влиять на выживаемость [2, 21]. Неадекватная стартовая терапия при нозокомиальных интраабдоминальных инфекциях наблюдается довольно часто в связи с наличием полирезистентных штаммов, недостаточностью информации о спектре возбудителей в данном ОРИТ и при отсутствии эффективных препаратов [1, 17]. Механизмы резистентности проблемных нозокомиальных возбудителей создают еще более жесткие условия для выбора оптимального лечения перитонитов [22–26].

Материал и методы исследования

Данное исследование проводилось в течение трех лет – с 2006 года по 2009 год. Были обследованы 168 пациентов, находившихся на лечении в *отделениях реанимации и интенсивной терапии* (ОРИТ) больницы скорой медицинской помощи (КБСМП) и областной клинической больницы Смоленска (СОКБ) по поводу перитонита. У 122 (72%) госпитализированных пациентов с клиникой ОИАИ была выполнена срочная операция. У 46 (28%) пациентов перитонит развился после проведения планового хирургического вмешательства. Средний

возраст пациентов с внебольничными перитонитами составил 57,9 \pm 18,5 (18-90) лет, возраст пациентов с послеоперационным (нозокомиальным) перитонитом $-48,1\pm15,2$ (21-77) лет.

Материалом для микробиологического исследования были аспират содержимого брюшной полости, фрагменты тканей кишечника, сальника, опухолей, фибрин, ткани желчного пузыря, полученные непосредственно в момент проведения оперативного вмешательства у пациентов с ОИАИ, которым затем проводилась интенсивная терапия в условиях ОРИТ. Полученный материал в транспортных средах доставлялся в лабораторию в течение трех часов с момента забора. Выделенные штаммы хранились в триптиказо-соевом бульоне с добавлением 30% глицерина в морозильной камере при температуре –70 °C.

Чувствительность определяли диско-диффузионным методом в соответствии с МУК 4.2.1890-04 и рекомендациями Комитета по клиническим и лабораторным стандартам США (CLSI-2009) на агаре Мюллера—Хинтон (BioRAD, Франция).

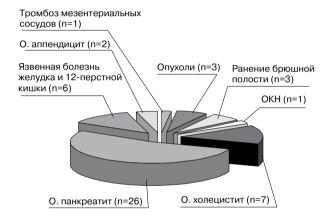
Результаты исследования

Клинические данные

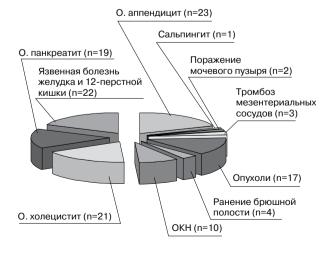
У 46 (28%) пациентов с нозокомиальным перитонитом оперативное вмешательство было повторным. Средняя длительность пребывания пациентов в стационаре составила: при внебольничных перитонитах — 21,6±20,9 сут (от 1 до 139 дней), при нозокомиальных перитонитах — 58,1±32,4 сут (от 7 до 139 дней). Тяжесть состояния пациентов оценивалась по шкале АРАСНЕ II. Она составила у пациентов с послеоперационным перитонитом 13,2±5,4 баллов, с внебольничным — 10,1±6,5 баллов.

В группе пациентов с послеоперационным перитонитом летальность составила 31,7% (14/46), в группе с внебольничным перитонитом – 21,1% (26/122), p<0,001.

В структуре заболеваний, осложнившихся нозокомиальным перитонитом, острый панкреатит был достоверно чаще — у 26 (56,5%) больных по сравнению с внебольничным перитонитом — у 19 (15,5%) больных, р<0,0001 (рис. 1). Среди заболеваний, осложнившихся внебольничным перитонитом, были: острый аппендицит — у 18,8% (23/122) больных, острый холецистит — у 17,1% (21/122), перфоративная язва желудка и двенадцатиперстной кишки — у 18% (22/122) (рис. 2).


Сопутствующая патология практически с равной частотой наблюдалась в обеих группах пациентов с внебольничным и нозокомиальным перитонитом — в 73 и 78% случаев. Однако у пациентов с послеоперационным перитонитом отмечалось пре-

обладание алкогольной болезни – 24%, в группе больных с внебольничным перитонитом – в 3,3% случаев (p<0,001).


Существенные различия наблюдались по тяжести течения перитонита. При послеоперационных перитонитах по сравнению с внебольничными перитонитами чаще наблюдались полиорганная недостаточность – 22% vs 10,7% (p<0,001), кровотечения – 15,2% vs 2,5% (p <0,001), осложнения со стороны дыхательной системы – 39% vs 4% (p<0,001), сепсис – 6,5% vs 3,3% (p <0,01) (рис. 3).

Микробиологические данные

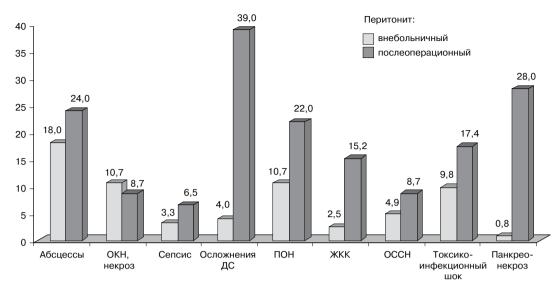

В полученном интраоперационном материале у пациентов с внебольничным перитонитом этиологически значимые микроорганизмы были выделены

Рис. 1. Заболевания, осложнившиеся нозокомиальным перитонитом (n=46).

Рис. 2. Заболевания, осложнившиеся внебольничным перитонитом (n=122).

Рис. 3. Сравнительная частота (в %) осложнений при внебольничных и послеоперационных перитонитах. ОКН – острая кишечная непроходимость, ДС – дыхательная система, ПОН – полиорганная недостаточность, ЖКК – желудочно-кишечное кровотечение, ОССН – острая сердечно-сосудистая недостаточность

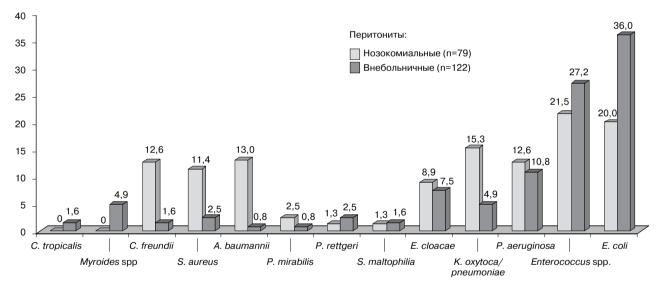


Рис. 4. Состав (в %) микроорганизмов, выделенных при внебольничных и нозокомиальных перитонитах.

в 61,5% (75/122) случаев, с послеоперационным перитонитом – в 89% (41/46) случаев.

Среди выделенных возбудителей у пациентов с внебольничным перитонитом было 122 аэробных и 52 анаэробных микроорганизма, в монокультуре — у 28 (37,3%), в микробных ассоциациях — у 48 (62,7%) пациентов.


У пациентов с нозокомиальным перитонитом – 79 аэробных и 7 анаэробных микроорганизма, в монокультуре – у 15 (32%), в микробных ассоциациях – у 26 (68%) пациентов.

Всего было выделено 23 штамма семейства Enterobacteriaceae, из них 15 – были продуцентами БЛРС. Выделение *E. coli* отмечено наиболее часто, как при внебольничных, так и при нозокомиальных перитонитах — 36 и 20% соответственно. Подобные результаты получены и для *Enterococcus* spp. — 27,2 и 21,5% соответственно. Чаще при нозокомиальном перитоните выделялась *P. aeruginosa* — 15,3% по сравнению с внебольничным — 4,9% (p<0,01), а также *Acinetobacter* spp. — 11,4% и 2,5% (p<0,01) соответственно. Частота выделения *S. aureus* при нозокомиальном перитоните составила 11,4%, по сравнению с 2,5% — при внебольничным (рис. 4).

Штаммы *E. coli* с высоким уровнем резистентности преобладали у пациентов с нозокомиаль-

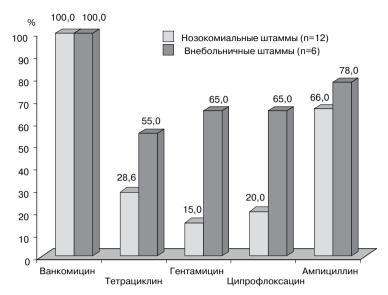
Рис. 5. Чувствительность к антибиотикам выделенных штаммов Enterobacteriaceae

Рис. 6. Чувствительность к антибиотикам выделенных штаммов *P. aeruginosa*

ным перитонитом. При этом чувствительность к наиболее часто применяемым в стационарах $A B \Pi$ – ципрофлоксацину и ЦС III–IV поколения составила 31 и 34,4% (рис. 5). Штаммы $E.\ coli$, продуцирующие B A P C (11/16), отличались устойчивостью сразу к четырем классам $A B \Pi$.

Из 7 выделенных штаммов *Klebsiella* spp. (8,9% – при внебольничных, 7,5% – при нозокомиальных

инфекциях) 4 являлись продуцентами БЛРС и, соответственно, резистентными ко всем цефалоспоринам.


Чувствительность 12 выделенных нозокомиальных штаммов *P. aeruginosa* к имипенему составила 25% (3/12), по сравнению с внебольничными 6 штаммами – 66,6% (4/6). Все нозокомиальные штаммы были устойчивы к цефепиму, также отмечалась низкая чувствительность их к амикацину и цефтазидиму (8,3 и 41,7% соответственно) (рис. 6). Среди всех нозокомиальных штаммов 42% были продуцентами *металло-*β-лактамаз (МБЛ).

Все 9 выделенных штаммов Acinetobacter spp. были резистентны к ЦС III—IV и ципрофлоксацину. Высокую активность сохранял только имипенем, как у пациентов с нозокомиальным, так и внебольничным перитонитом

Среди 17 выделенных нозокомиальных штаммов *Enterococcus* spp. чувствительными к ципрофлоксацину были 20%, гентамицину – 15%, тетрациклину – 28,6% и

ампициллину – 66% штаммов (рис. 7). Все 50 выделенных штаммов сохраняли чувствительность к ванкомицину.

Из 10 идентифицированных штаммов *S. aureus* 8 (80%) были MRSA при сохранении чувствительности только к ванкомицину – в 100% случаев.

Рис. 7. Чувствительность к антибиотикам выделенных штаммов *Enterococcus* spp.

Обсуждение результатов исследования

Послеоперационный перитонит является одним из самых серьезных осложнений в абдоминальной хирургии. Этот факт контрастирует с малым количеством исследований и публикаций, обсуждающих основную проблему при данной патологии - оптимальный выбор стартовой АБТ. Нозокомиальная микрофлора, предшествовавшая инвазивная терапия и АБТ являются факторами риска развития инфекционных осложнений, прежде всего интраабдоминального сепсиса [1, 2]. Мы обследовали 168 пациентов с перитонитом, среди которых послеоперационный перитонит наблюдался у 46 (28%) больных. Полученные данные о частоте нозокомиальной ИАИ, тяжести течении и органной дисфункции были сравнимы с имеющимися данными в литературе [9]. Группа пациентов с нозокомиальным перитонитом по тяжести состояния отличалась от пациентов с другими вариантами вторичных перитонитов. Тяжесть состояния оценивалась по шкале APACHE II и в группе с послеоперационными перитонитами в среднем была равна 13,2±5,4 баллам.

Среди заболеваний, осложнившихся нозокомиальным перитонитом, на первом месте был острый панкреатит — в 56,5% случаев (чаще на фоне алкогольной болезни). Длительность пребывания в стационаре пациентов с нозокомиальным перитонитом составила в среднем 58 суток (до 90,5), по сравнению с пациентами с внебольничным перитонитом — 22 дня (до 42,5). Это было обусловлено тяжестью течения заболевания, проблемами АБТ, необходимостью повторных оперативных вмеша-

тельств. Полученные данные отражают более высокий риск присоединения у таких пациентов осложнений со стороны других органов и систем: наиболее часто поражение дыхательной системы — 39%, панкреонекроз — 28%, полиорганная недостаточность — 22%, кровотечения — 15,2% (p<0,001).

При более тяжелом течении и полиорганных осложнениях как прямое следствие наблюдается высокий уровень летальности [27]. В нашем исследовании у пациентов с нозокомиальной ОИАИ летальность составила 31,7%, у пациентов с внебольничной ОИАИ – 21,1%.

В бактериальном спектре аэробных возбудителей внебольничных перитонитов у обследованных пациентов преобладали представители семейства *Enterobacteriaceae*, что не противоречило данным литературы. Среди штаммов

микроорганизмов, выделенных у пациентов с послеоперационным перитонитом, наблюдался рост частоты выделения продуцентов БЛРС, резистентных к ЦС III—IV и ципрофлоксацину. Несмотря на более низкую частоту выделения *E. coli* у пациентов с послеоперационным перитонитом по сравнению с внебольничным, частота выделения штаммов *E. coli* БЛРС⁺ в этой группе преобладала — 69% (32/46). При нозокомиальном перитоните также наблюдался сравнительно высокий уровень выделения *Enterococcuss* spp., что, по данным ранее выполненных исследований, может быть связано с предыдущей антибактериальной терапией, особенно ЦС III поколения.

Среди послеоперационных перитонитов летальность, составившая в среднем 31%, была, как правило, среди пациентов, у которых были выделены полирезистентные возбудители, такие как представители *Enterobacteriaceae* (БЛРС⁺), *S. aureus* (MRSA), *P. aeruginosa* (МБЛ), что было отмечено и другими авторами [19, 28].

Среди пациентов, у которых была выделена *P. aeruginosa*, отмечался низкий уровень эффективности стартовой АБТ, многочисленные смены (до 5 раз) комбинаций АМП, необоснованно длительные курсы АБТ. Устойчивыми к цефепиму среди выделенных нозокомиальных штаммов были 100%, а к имипенему — 75% штаммов. Проблемным возбудителем в терапии нозокомиального перитонита остается *Acinetobacter* spp., выделенные штаммы которого в 89% были резистентны к АМП трех классов. Только имипенем сохранял высокую активность в отношении штаммов *Acinetobacter* spp., выделенных

у пациентов как с послеоперационным, так и с внебольничным перитонитом.

После первого хирургического вмешательства все пациенты получали АБТ независимо от выполнения антибиотикопрофилактики. Наблюдалась зависимость частоты выделения полирезистентных возбудителей и тяжести состояния пациентов от сроков выполнения повторного вмешательства. При более поздних повторных вмешательствах с большей частотой выделялись резистентные штаммы и, соответственно, нарастала тяжесть состояния пациентов.

В проведенном исследовании назначение АМП часто основывалось на наличии АМП в стационаре, стартовая терапия была идентична у пациентов с внебольничным и нозокомиальным перитонитом, альтернативная АБТ мало отличалась от стартовой, не подтверждалась микробиологическими исследованиями.

Данные, полученные в нашем исследовании, показывают, что наиболее *in vitro* активными препаратами при послеоперационных перитонитах являются карбапенемы. Рекомендуемые в литературе

комбинации ЦС третьего или четвертого поколения с АМП с антианаэробной активностью, в условиях исследованных стационаров, могут оказаться неадекватными в связи с ростом выделения продуцентов БЛРС среди Enterobacteriaceae. В связи с изменением уровня чувствительности нозокомиальных возбудителей к карбапенемам выбор представителей данной группы для стартовой терапии должен быть подтвержден микробиологическими исследованиями с определением чувствительности и данными локального мониторинга резистентности. Выделение и идентификация анаэробов может представлять интерес для решения вопроса о необходимости введения в терапию АМП с антианаэробной активностью у пациентов с тяжелыми внебольничными перитонитами.

Таким образом, микробиологическое исследование интраоперационного материала при нозокомиальном перитоните у пациентов в ОРИТ является основой как для адекватной и своевременной индивидуальной АБТ, так и для прогноза и планирования тактики АБТ в ОРИТ в будущем [8,29].

Литература

- Montravers P., Gauzit R., Muller C., et al. Emergence of antibiotic-resistent bacteria in cases of peritonitis after intra-abdominal surgery affects the effeacacy of empirical antimicrobial therapy. Clin Infect Dis 1996; 23:486-94.
- Solomkin J.E., Mazuski J. E., Baron E.J., et al. Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis 2003; 37:997-1005.
- 3. Решедько Г.К., Козлов Р.С. Состояние резистентности к антиинфекционным препаратам в России. В кн.: Практическое руководство по антиинфекционной химиотерапии. Под ред. Страчунского Л.С., Белоусова Ю.Б., Козлова С.Н. Смоленск, 2007. МАКМАХ, С. 32-46.
- Swenson B.R., Metzger R.Choosing antibiotics for intraabdominal infections: what do we mean by "high risk"? Surgical infections 2009;10(1):29-39.
- 5. Руднов В.А. Антибиотикотерапия госпитальных инфекций, вызванных *P. aeruginosa*. РМЖ 2005; 13(7):2-5.
- 6. Илюкевич Г.В., Смирнов В.М., Левшина Н.Н. Синегнойная инфекция в ОРИТ: современное состояние проблемы. Медицинские новости, 2008.
- 7. Гельфанд Б.Р. Ефименко Н.А., Зузова А.П. Интраабдоминальные инфекции. В кн.: Практическое руководство по антимикробной химиотерапии. Под ред. Страчунского Л.С., Белоусова Ю.Б., Козлова С.Н. Смоленск, МАКМАХ, 2007. С. 281-5.
- 8. Страчунский Л.С. Профиль чувствительности про-

- блемных микроорганизмов в ОРИТ. Consilium medicum 2002. Экстра-выпуск.
- Roehrbone A., Thomas L., Potreck O., et al. The Microbiology of postoperative peritonitis. Clin Infect Dis 2001; 33:1513-9.
- Mazuski JE, Solomkin JS. Intra-abdominal infection. Surg Clin North Am 2009; 89:421-37.
- Dupont H. The empiric treatment of nosocomial intraabdominal infections. Int J Infect Dis 2007; 11(Suppl 1)S1-6.
- 12. Abhijit Chandra, Puneet Dhar. Cefoperazone-sulbactam for treatment of intra-abdominal infections: results from a randomized, parallel group study in India. Surg Infect 2008; 9:367-6.
- Зубков М.Н. Роль цефалоспоринов в лечении тяжелых и осложненных интра-абдоминальных инфекций. Фарматека 2006, 15:40-4.
- 14. Luke F. Chen, MBBS, FRACP. Klebsiella pneumoniae carbapenemase: expended-spectrum beta-lactamase continues to go global. From Medscape Infectious Diseases. Available at URL: http://www.medscape.com/ viewarticle/587949.
- 15. Holzheimer R.G., Dralle H. Antibiotic therapy in intraabdominal infections. A review on randomized clinical trials. Eur J Med Res 2001; 6:277-91.
- 16. Jakovlev S.V., Beloborodov V.B., Sidorenko S.V., et al. Multicentre study of comparative efficacy of meropenem and combined regimens for empirical antibacterial therapy of severe nosocomial infections: results of clinical and pharmacoeconomic analysis. Indian J Med Microbiol. 2007; 25:121-5.

- 17. В.Б. Белобородов Проблема антибактериальной терапии инфекций в ОРИТ с позиции доказательной медицины. Consilium medicum 2002, 4(1):31-38.
- Schwaber M.J., Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in *Enterobacteriaceae* bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007; 60:913-20.
- 19. Melzer M., Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing *E. coli* compared to non-ESBL producing *E. coli*. J infection 2007; 55:254-9.
- Tellado J.M., Sen S.S., Caloto M.T., Kumur R.N., Nocea G. Consequences of inappropriate initial empiric parenteral antibiotic therapy among patients with communityacquired intra-abdominal infections in Spain. Scand J Infect Dis 2007; 39:947-55.
- 21. Бекетов А.С., Сидоренко С.В., Писарев В.В., Комаров Р.М. Клинико-экономическая оценка антибактериальной терапии интраабдоминальных инфекций. Качественная клиническая практика, 2002;3:60-7.
- 22. Kotapati S., Kuti J.L., Nightingale C.H., Nicolau D.P. Clinical implications of extended spectrum beta-lactamase (ESBL) produsing *Klebsiella* spp. and *E.coli* on cefepime effectiveness. J Infect 2005; 51:211-7.

- 23. Basseti M., Righi E., Esposito S., Petrosillo N., Nicolini L. Drug treatment for multidrug-resistant *A.baumanii* infections. Future Microbiology 2008; 3:649-60.
- 24. Sinha M, Srinivasa H. Mechanisms of resistance to carbapenems in meropenem- resistant *Acinetobacter* isolates from clinical samples. Indian J Med Microbial 2007; 25:121-5.
- Solomkin J.S, Mazuski J. Intra-abdominal sepsis: rewer interventional and antimicrobial therapies. Infect Dis Clin North Am 2009; 23:593-608.
- 26. Jason J., Schafer A, Debra A. G. Establishing the role of tigecycline in an era of antimicrobial resistance. From Expert review of anti-infective therapy. Available at URL: http://www.medscape.com/viewarticle/584809
- 27. Osmon S., Ward S., Fraser V.J., Kollef M.H. Hospital mortality for patient with bacteremia due to *S. aureus* or *P. aeruginosa*. Clinical Investigation in Critical Care. Chest 2004; 125:607-16.
- 28. Patterson J.E. Extended spectrum beta-lactamases: a therapeutic dilemma. Pediatr Infect Dis J 2002; 21:957-
- 29. Tellado J.M. The need for new antimicrobials for intraabdominal infections: defining the forthcoming scenario. Surgical infections 2008; 9:313-5.