УДК 579.843.93.083

Род Chryseobacterium (Flavobacterium): клиническое значение, идентификация, чувствительность к антибиотикам

Л.Г. Боронина, М.П. Кукушкина, К.В. Крутова, С.М. Блинова

Уральская государственная медицинская академия, Екатеринбург, Россия Областная детская клиническая больница № 1, Екатеринбург, Россия

В группу неферментирующих грамотрицательных бактерий наряду с такими известными патогенами человека, как Pseudomonas aeruginosa, Acinetobacter spp., Burkholderia spp., Bxoдят микроорганизмы рода Chryseobacterium (ранее - Flavobacterium). Хризеобактерии широко распространены в окружающей среде, нередко контаминируют предметы и поверхности в стационаре лечебно-профилактического учреждения и могут быть источником инфекции для госпитализированных пациентов.

Наибольшее клиническое значение имеет Chryseobacterium meningosepticum, которая может вызывать развитие инфекций, чаще нозокомиальных, преимущественно у иммунокомпрометированных пациентов. Основные клинически значимые формы инфекции, вызванные С. теningosepticum, - менингит и бактериемия у новорожденных, особенно недоношенных детей, находящихся в отделениях реанимации и интенсивной терапии, а также нозокомиальная пневмония. У взрослых наиболее частой формой ин-

фекции, вызванной хризеобактериями, является пневмония, как правило, связанная с проведением искусственной вентиляции легких.

Chryseobacterium spp. обладают природной устойчивостью ко многим антимикробным препаратам, применяемым для лечения инфекций, вызванных грамотрицательными бактериями, аминогликозидам, β -лактамам, тетрациклинам, хлорамфениколу, однако чувствительны к таким антибиотикам, как ванкомицин, рифампицин, клиндамицин, а во многих случаях и к ко-тримоксазолу. Препаратами выбора для эмпирической терапии клинически значимых инфекций, вызванных хризеобактериями, следует считать комбинации рифампицина с ванкомицином или триметопримом/сульфаметоксазолом, а также монотерапию фторхинолонами.

Ключевые слова: неферментирующие грамотрицательные бактерии, Chryseobacterium Flavobacterium, C. meningosepticum, нозокомиальные инфекции, антибиотикорезистентность, новорожденные, менингит, бактериемия.

Chryseobacterium (Flavobacterium) spp.: Clinical Significance, Identification, Antimicrobial Susceptibility

L.G. Boronina, M.P. Kukushkina, K.V. Krutova, S.M. Blinova

Ural State Medical Academy, Ekaterinburg, Russia Region Children's Hospital № 1, Ekaterinburg, Russia

Along with known human pathogens, such as

Pseudomonas aeruginosa, Acinetobacter spp.,

Контактный адрес: Любовь Григорьевна Боронина Эл почта: odkb1@mail.ru

Burkholderia spp., group of non-fermentative Gram-negative rods includes gender Chryseobacterium (former Flavobacterium). Chryseobacteria are ubiquitous microorganisms, which may contaminate hospital environment and be a source of infection for hospitalized patients.

Of the *Chryseobacterium* species, *C. meningo-septicum* is the most important human pathogen, which may cause infections (primarily nosocomial), especially in immunocompromised patients. The main clinically significant types of infection, caused by *C. meningosepticum* are neonatal meningitis and bacteremia, especially in premature infants in the intensive care units, and nosocomial pneumonia. The most common presentation of *Chryseobacte-rium* spp. infection in adults is pneumonia, which is usually associated with mechanical ventilation.

Chryseobacterium spp. are usually resistant to most antimicrobials, used for treatment of infec-

tions, caused by Gram-negative microorganisms, – aminoglycosides, β -lactams, tetracyclines, chloramphenicol, but susceptible to such antimicrobials, as vancomycin, rifampicin, clindamycin, and in many cases to trimethoprim/sulfamethoxazole. Initial regimens for the treatment of clinically significant *Chryseobacterium* spp. infections include rifampicin in combination with vancomycin or trimethoprim/sulfamethoxazole, a fluoroquinolone.

Key words: non-fermentative Gram-negative rods, *Chryseobacterium*, *Flavobacterium*, *C. meningosepticum*, antimicrobial resistance, neonates, meningitis, bacteremia.

Введение

Неферментирующие грамотрицательные бактерии (НГОБ) имеют важное значение в этиологии инфекций человека, особенно нозокомиальных. Общее свойство представителей данной группы микроорганизмов — неспособность к ферментации глюкозы в анаэробных условиях.

Наряду с общеизвестными патогенами человека, такими, как *Pseudomonas aeruginosa* и *Acinetobacter* spp., в группу НГОБ входят бактерии рода *Chryseobacterium* (ранее – *Flavobacterium*). Некоторые из них, в частности *Chryseobacterium meningosepticum*, в отдельных случаях способны вызывать развитие клинически значимых инфекций у человека. Однако в российской медицинской литературе крайне недостаточно информации о значении этой группы бактерий.

Общая характеристика бактерий рода Chryseobacterium

В соответствии с пересмотренной таксономической классификацией семейства *Flavobacteriaceae* [1, 2] многие виды рода *Flavobacterium* отнесены к другим родам (табл. 1).

Так, два наиболее часто выделяемых из клинического материала вида *F. meningosepticum* и *F. indologenes*, а также *F. balustinum*, *F. gleum*, *F. indol-*

Таблица 1. Таксономическая классификация семейства Flavobacteriaceae

Старое название [3]	Новое название [1, 2]			
Flavobacterium gleum	Chryseobacterium gleum			
Flavobacterium indologenes	Chryseobacterium indologenes			
Flavobacterium meningosepticum	Chryseobacterium meningosepticum			
Flavobacterium odoratum	Myroides odoratus, Myroides odoratimimus			
Flavobacterium breve	Empedobacter brevis			

theticum, F. scophthalmum теперь принадлежат роду Chryseobacterium. Flavobacterium odoratum, практически не имеющая клинического значения, перемещена в новый род Myroides и подразделяется на 2 вида: M. odoratus и M. odoratimimus. В отдельный род выделена Flavobacterium breve, которая названа Empedobacter brevis. Остальные 10 видов флавобактерий, составляющие собственно род Flavobacterium, являются индолотрицательными микроорганизмами, не обнаруживаемыми в клинических образцах [1].

Как указывалось, *Chryseobacterium* spp. относятся к группе НГОБ. Они представляют собой грамотрицательные аэробы, неподвижны, каталазо- и оксидазооположительны (табл. 2). В окрашенных по Граму мазках могут иметь вид длинных, тонких и немного изогнутых палочек.

Все штаммы *Chryseobacterium* spp. гидролизуют желатин и эскулин. Результаты некоторых биохимических тестов (например, тест на ДНКазу, уреазу, гидролиз крахмала) могут варьировать и зависят от выбора питательной среды, химических реактивов и длительности инкубации [5].

Все штаммы *Chryseobacterium* spp. дают положительную реакцию на индол. Однако часто реакция бывает слабовыраженной, в связи с чем для ее проведения следует использовать метод Эрлиха как на-

иболее чувствительный [6].

Микроорганизмы рода *Chryseo-bacterium* хорошо растут на простых питательных средах, кровяном и шоколадном агаре, образуя колонии уже в течение 24 ч. Оптимальная температура инкубации — 35–37°C. Значительно медленнее *Chryseobacterium* spp. растут на агаре МакКонки. В некоторых случаях рост отсутствует вообще [2].

Таблица 2. Основные дифференциально-диагностические свойства бактерий, ранее входивших в род Flavobacterium [2, 4]

Свойства	Empedobacter brevis	Chryseobacterium gleum	Chryseobacterium indologenes	Myroides odoratus	Chryseobacterium meningosepticum	
Оксидаза*	+	+	+	+	+	
Подвижность	_	=	_	_	=	
Индол	+	+	+	_	+	
Наличие пигмента флексирубина (нерастворимый)	+	+	+	НД	_	
Наличие желтого пигмента	Бледный	Яркий	Яркий	V	+	
_					(незначительный)	
β -Галактозидаза (ONPG)	-	V	V	_	+	
Редукция нитратов до нитритов	_	V	V	_	_	
Желатиназа	+	+	+	+	+	
Гидролиз крахмала	-	+	+	_	=	
Гидролиз эскулина	_	+	+	_	+	
Уреаза	_	V	V	+	V	
Кислота из:						
лактозы	_		_	_	V	
маннита	_	_	_	_	V	
мальтозы	+	+	+	_	+	
сахарозы	_	V	V	_	_	
КСИЛОЗЫ	_	V	V	_	-	
глицерина	_	V	V	_	V	
арабинозы	_	V	V	_	_	
Рост при температуре 42°C	_	V	V	_	V	
Рост на среде МакКонки	Нет данных	V	V	V	V	

Примечание: «+» – 90% и более штаммов дают положительный результат, «-» – 90% и более штаммов дают отрицательный результат, V – тест вариабельный. * Лучше использовать метод Ковача, так как *C. meningosepticum* в тесте по Эрлиху может давать отрицательный результат.

При росте на питательных средах *Chryseo*bacterium spp. образуют желтый или оранжевый пигмент различной интенсивности. Колонии C. meningosepticum крупные (диаметром 1-2 мм), с гладкой поверхностью, чаще имеют бледно-желтую окраску, что обусловлено слабым пигментообразованием. Колонии С. indologenes, напротив, насыщенного темно-желтого цвета, что связано с синтезом водонерастворимого пигмента флексирубина.

Клиническое значение *Chryseobacterium* spp.

Микроорганизмы рода *Chryseobacterium* широко распространены в окружающей среде и обнаруживаются в почве, воде, различных пищевых продуктах (сырое мясо, молоко). Хризеобактерии могут обитать в городской системе водоснабжения, несмотря на адекватное хлорирование воды. В стационарах лечебно-профилактических учреждений они контаминируют различные объекты и поверхности. Часто это наблюдается в тех отделениях и палатах, где находятся пациенты, из клинического материала которых также выделяются Chryseobacterium spp. В таких ситуациях следует иметь в

виду, что объекты окружающей среды могут быть источниками инфекции для госпитализированных пашиентов.

Повторное выделение хризеобактерий с медицинского оборудования, инструментов, из растворов и других объектов, особенно используемых у нескольких больных, может свидетельствовать о возможности распространения данного возбудителя в стационаре и возникновении нозокомиальных микровспышек инфекций, вызванных этими микроорганизмами.

Chryseobacterium spp., как и большинство других НГОБ, обладают низкой вирулентностью. Присутствие их в клиническом материале, как правило, представляет собой колонизацию, а не инфекцию [7, 8].

Часто хризеобактерии выделяются из клинического материала в ассоциации с другими микроорганизмами. Это, в свою очередь, создает трудности при решении вопроса о необходимости дальнейшего тестирования культур и определения чувствительности их к антибиотикам. В таком случае значимость обнаружения Chryseobacterium spp. в клинических образцах должна определяться индивиду-

ально в каждом случае, принимая во внимание состояние пациента, наличие симптомов инфекции, источник и характер материала, из которого выделен данный микроорганизм.

Безусловное клиническое значение имеет выделение чистой культуры *Chryseobacterium* spp. из стерильных в норме тканей, биологических жидкостей организма (кровь, ликвор) и полостей. Кроме того, клиническое значение имеет повторное обнаружение хризеобактерий в высокой концентрации в другом клиническом материале (например, мокроте) при отсутствии в нем более вирулентных микроорганизмов, у пациентов с нозокомиальными инфекциями на фоне действия предрасполагающих факторов. В то же время рост *Chryseobacterium* spp., выделенной из материала, полученного путем эндотрахеальной аспирации от пациента без клинических признаков пневмонии, не имеет диагностической ценности [2].

Из всех известных представителей рода *Chryseo-bacterium* наибольшее клиническое значение имеет *C. meningosepticum* [9].

С. meningosepticum, как и другие хризеобактерии, является «классическим» оппортунистическим микроорганизмом, то есть вызывает развитие клинически манифестных инфекций при значительном снижении иммунологической реактивности организма.

Одна из наиболее частых клинических форм инфекции, вызванная *С. meningosepticum*, — менингит, развивающийся у новорожденных, преимущественно у недоношенных детей, в первые 2 нед жизни [9–11]. В литературе неоднократно описаны нозокомиальные вспышки менингита, вызванного *С. meningosepticum* у новорожденных, находящихся, в частности, в *отделениях реанимации и интенсивной терапии* (ОРИТ) [12, 13].

Факторами риска инфицирования новорожденных *Chryseobacterium* spp. являются: длительное госпитальное лечение, пребывание в кювезе, где создаются благоприятные условия для существования этого микроорганизма (оптимальная температура и высокая влажность), инвазивные манипуляции, использование дыхательной аппаратуры, сосудистых катетеров, дренажей, нарушающих целость кожи и слизистых оболочек, предшествующая терапия антибиотиками, неактивными в отношении хризеобактерий.

Групповые случаи менингита, вызванного этим возбудителем, связаны с различными резервуарами хризеобактерий в стационаре, в том числе контаминированным физиологическим раствором для промывания глаз и другими растворами (антисептиков, для зондового питания), дыхательной аппаратурой, сосудистыми катетерами [12–15].

Клиническая картина менингита, вызванного *С. тепіпдоѕерtісит*, не отличается от таковой бактериальных менингитов другой этиологии [16, 17]. Заболевание у новорожденных протекает тяжело и более чем в половине (до 57%) случаев заканчивается летальным исходом [9]. У 60–70% больных отмечается связь менингита, вызванного хризеобактериями, с гидроцефалией. У многих детей, перенесших менингит, в последующем наблюдаются выраженные остаточные изменения функции нервной системы и задержка нервно-психического развития.

С. meningosepticum также может вызывать у новорожденных сепсис и пневмонию [9, 13, 18]. Первичным местом локализации возбудителя обычно являются дыхательные пути. В большинстве случаев связано это с искусственной вентиляцией легких (ИВЛ). В грудном возрасте и у старших детей в структуре заболеваемости инфекциями, вызванными С. meningosepticum, нозокомиальная пневмония занимает первое место, составляя до 40% всех случаев [9].

У взрослых *C. meningosepticum* вызывает клинически манифестные инфекции значительно реже, чем у новорожденных. Чаще эти инфекции являются нозокомиальными и развиваются у иммунокомпрометированных пациентов, преимущественно пожилого возраста [10, 19].

У взрослых наиболее частой локализацией инфекции, вызванной *С. meningosepticum*, являются дыхательные пути [7, 20]. Описаны вспышки нозокомиальной пневмонии у взрослых пациентов в ОРИТ, связанные с контаминацией возбудителем дыхательного контура аппарата ИВЛ, лекарственных аэрозолей и растворов [9, 21].

Резервуарами хризеобактерий в стационаре также могут быть флаконы для растворов, водопроводные фильтры, препараты для зондового питания, сосудистые катетеры и растворы для их промывания, датчики для измерения артериального давления [8, 9, 19, 22]. В то же время показано, что при возникновении нозокомиальных вспышек пневмонии, вызванной *С. meningosepticum*, у большинства вовлеченных в них пациентов наблюдается всего лишь колонизация дыхательных путей без последующего развития инфекции [7].

Вторая наиболее распространенная у взрослых форма инфекции, вызванная *С. тепіпдоѕертісит*, — бактериемия [8]. Бактериемия, вызванная этим возбудителем, может быть транзиторной, при этом признаки системной инфекции исчезают без назначения специфической терапии [2, 7]. Крайне редко у госпитализированных взрослых пациентов *С. тепіпдоѕертісит* может вызывать эндокардит (особенно у больных с протезированными клапа-

нами), целлюлит, раневые, интраабдоминальные инфекции, эндофтальмит, синусит и бронхит [9].

Несмотря на то что *C. meningosepticum* в большинстве случаев является нозокомиальным патогеном, вызывающим инфекции у иммунокомпрометированных пациентов, имеются единичные сообщения о случаях целлюлита, артрита, внебольничной инфекции нижних дыхательных путей и бактериемии, вызванных этим микроорганизмом, у практически здоровых взрослых и детей [23–26].

Из всех видов хризеобактерий наиболее часто выделяется *С. indologenes*, которая, однако, крайне редко играет этиологическую роль в развитии инфекций у человека [2]. Тем не менее с середины 90-х годов XX в. в мире стали регистрироваться случаи нозокомиальной бактериемии, вызванной *С. indologenes*, связанные с использованием постоянных сосудистых катетеров, а также инфекций кровотока у пациентов с тяжелыми сопутствующими заболеваниями (злокачественные новообразования, нейтропеническая лихорадка) [27, 28].

Чувствительность *Chryseobacterium* spp. к антимикробным препаратам

Выбор эмпирической антибактериальной терапии для лечения инфекций, вызванных *Chryseobacte-rium* spp., представляет значительные трудности. В то же время назначение неадекватной этиотропной терапии приводит к увеличению летальности [12].

По литературным данным, микроорганизмы рода *Chryseobacterium* обладают природной устойчивостью ко многим антимикробным препаратам, применяемым для лечения инфекций, вызванных грамотрицательными бактериями: аминогликозидам, пенициллинам, цефалоспоринам, карбапенемам, тетрациклину, хлорамфениколу [8, 12, 29].

Многие представители *Chryseobacterium* spp. продуцируют хромосомные β -лактамазы, относящиеся к молекулярному классу В (подкласс В1) [29, 30]. Эти ферменты (металло- β -лактамазы) и обеспечивают данному микроорганизму резистентность к подавляющему большинству β -лактамных антибиотиков, включая карбапенемы и азтреонам.

У *С. тепіпдоѕертісит* описано как минимум 2 гена, кодирующих карбапенемазы, — *BlaB* и *GOB-1*, которые характеризуются неоднородностью и встречаются в различных комбинациях у разных штаммов [31]. Установлено, что *С. тепіпдоѕертісит* продуцирует β -лактамазы расширенного спектра (СМЕ-1 и СМЕ-2), относящиеся к молекулярному классу A и функциональной группе 2be [32].

Таким образом, *Chryseobacterium* spp. представляют собой широко распространенный природный резервуар генов, кодирующих β -лактамазы, что мо-

жет иметь большое клиническое значение при распространении этих ферментов среди других грамотрицательных аэробов, являющихся патогенами человека. Более того, металло- β -лактамазы, продуцируемые *С. meningosepticum*, способны гидролизовать ингибиторы сериновых β -лактамаз, включая сульбактам и тазобактам [30].

В то же время *Chryseobacterium* spp., как ни парадоксально, чувствительны к антибиотикам, традиционно используемым для лечения инфекций, вызванных грамположительными микроорганизмами: ванкомицину, рифампицину, клиндамицину [2, 8, 9]. Фторхинолоны в большинстве случаев также активны *in vitro* в отношении хризеобактерий [8, 29].

Чувствительность различных штаммов *Chryseo-bacterium* spp. к доксициклину и триметоприму/сульфаметоксазолу значительно варьирует [7]. Высокой активностью в отношении большинства штаммов хризеобактерий обладает рифампицин, поэтому он успешно используется для лечения инфекций, вызванных *Chryseobacterium* spp. [12, 16, 33].

В некоторых работах продемонстрирована хорошая эффективность использования ванкомицина в виде монотерапии или в комбинации с другими антибиотиками, например с рифампицином, при тяжелом клиническом течении инфекций, вызванных *С. meningosepticum*, в частности менингитов у новорожденных [8, 16, 33]. Однако данные о его эффективности при лечении этих инфекций остаются противоречивыми.

В нескольких исследованиях эффективности терапии менингита, вызванного хризеобактериями, минимальная подавляющая концентрация (МПК) ванкомицина составила 8–12 мг/л, что свидетельствует о чувствительности возбудителя к препарату. В то же время в 1997 г. две группы исследователей сообщили о выделении штаммов *Chryseobacterium* spp. с МПК ванкомицина от 16 до > 64 мг/л, поставив тем самым вопрос о целесообразности использования ванкомицина для лечения этих инфекций [9, 29].

Все штаммы *С. indologenes* резистентны к цефазолину, цефотаксиму, цефтриаксону, азтреонаму, аминогликозидам, эритромицину, клиндамицину, ванкомицину и тейкопланину [27, 34]. В то же время чувствительность *С. indologenes* к пиперациллину, цефоперазону, цефтазидиму, имипенему, фторхинолонам, триметоприму/сульфаметоксазолу значительно варьирует у различных штаммов, что требует определения чувствительности к антибиотикам в каждом конкретном случае [27, 34]. В то же время существуют определенные трудности, связанные с определением чувствительности *Chryseobacterium* spp. к антимикробным препаратам. В о - п е р в ы х, до настоящего времени *Национальным комитетом по клиническим лабораторным стандартам* (NCCLS) не разработаны специфические критерии интерпретации результатов исследования чувствительности хризеобактерий к антибиотикам. Для этой цели используют критерии, разработанные для *P. aeruginosa* и *Acinetobacter* spp. [35].

В о - в т о р ы х, во многих исследованиях показано, что результаты определения чувствительности *Chryseobacterium* spp. дискодиффузионным методом и с помощью Е-тестов не коррелируют с результатами, полученными при исследовании методом микроразведений в бульоне [29, 36]. Метод Е-тестов может быть использован в качестве альтернативы стандартному методу разведений в агаре, но только для определения чувствительности к цефотаксиму, цефтазидиму, амикацину, офлоксацину и ципрофлоксацину [37].

Учитывая изложенное, можно сделать вывод, что пока не разработан оптимальный режим антибактериальной терапии инфекций, вызванных *С. meningosepticum*. Выбор антибиотика должен основываться на результатах исследования чувствительности выделенного в каждом конкретном случае штамма возбудителя. В качестве наиболее надежного диагностического метода должны использоваться методы разведений на среде Мюллера – Хинтон [30].

На основании имеющихся в литературе данных, стартовыми режимами терапии инфекций, вызванных *Chryseobacterium* spp., следует считать комбинации рифампицина с ванкомицином или триметопримом/сульфаметоксазолом и монотерапию фторхинолонами (ципрофлоксацин, левофлоксацин и др.) [9, 34].

Собственные наблюдения

С июля 1998 по июль 2001 г. нами проведено микробиологическое исследование 482 образцов ликвора, взятых у детей в возрасте от 1 сут до 1 года, лечившихся в реанимационном и хирургическом отделениях и отделениях патологии новорожденных Екатеринбурга с диагнозами сепсиса, менингита и менингоэнцефалита. У всех детей имелась сопутствующая патология: респираторный дистресс-синдром, гипоксически-ишемическое поражение центральной нервной системы, недоношенность различной степени.

Культивирование бактерий, их идентификацию и тестирование на чувствительность к антибиотикам проводили на автоматическом анализаторе «Vital» и полуавтоматической системе идентификации культур и определения чувствительности к антибиотикам «ATB-Expression» (bioMerieux, Франция).

Положительные результаты посева ликвора получены у 142 детей. У 16 (11,3%) из них в качестве причинного микроорганизма выделены штаммы *С. meningosepticum*; у 5 детей возбудитель выделялся в нескольких последовательных образцах, взятых с различным интервалом.

Всего с июля по декабрь 1998 г. выделено 8 штаммов *С. meningosepticum* от 4 детей, в 1999 г. – 4 штамма от 2 детей, в 2000 г. – 10 штаммов от 6 детей, в 2001 г. (с января по июль) – 9 штаммов от 4 детей. У одного ребенка в 2001 г. данный возбудитель выделялся на протяжении более 1 мес.

Чувствительность к антибиотикам исследована у 7 штаммов *C. meningosepticum*, выделенных у 7 детей (табл. 3).

Все 7 штаммов оказались чувствительными к пиперациллину (100%), пиперациллину/тазобактаму (100%) и ко-тримоксазолу (100%). Из аминогликозидов только к амикацину были чувствительны штаммы, выделенные у 5 детей. Штаммы с промежуточной резистентностью к амоксициллину/клавуланату выделены у 6 из 7 детей, к ципрофлоксацину — у 2 из 7. К другим протестированным антибиотикам (тикарциллину, цефазолину, цефтазидиму, имипенему, азтреонаму и гентамицину) выделенные штаммы хризеобактерий оказались устойчивыми. Для 2 штаммов была также определена чувствительность к ванкомицину, тейкоплакину и рифампицину. Оба штамма оказались чувствительными к указанным антибиотикам.

Частота бактериемии, вызванной *Chryseobacterium* spp., у детей первого года жизни, находившихся в ОРИТ, была значительно ниже, чем частота менингитов, обусловленных этим возбудителем. Так, в 1998 г. зарегистрированы 3 случая бактериемии, в 1999 г. – 3, в 2000 г. – 11, в 2001 г. – 3.

Штаммы *С. meningosepticum* также часто выделялись из мокроты у детей, находившихся на ИВЛ. В 1998 г. был выделен 121 штамм, в 1999 г. – 88, в 2000 г. – 126, в 2001 г. – 114. У большинства детей этот микроорганизм обнаруживался в нескольких последовательно взятых образцах аспирата. У части детей он выделялся одновременно из мокроты и крови или (и) ликвора.

При культуральном исследовании объектов внешней среды, проведенном по эпидемиологическим показаниям в отделениях, где находились дети с инфекциями, вызванными *Chryseobacterium* spp., была установлена контаминация канюли аппарата ИВЛ.

Заключение

Chryseobacterium spp. являются повсеместно распространенными микроорганизмами, обнаружива-

Таблица 3. Результаты исследования чувствительности к антибиотикам штаммов *С. meningosepticum*, выделенных в Областной детской клинической больнице № 1 Екатеринбурга

У., 2 мес. Н., 1 мес. Ч., 11 сут. Б., 17 сут. Л., 16 сут. И., 1 сут. М., 1.5 мес

Антибиотик	У., 2 мес, 1998 г.	Н., 1 мес, 1998 г.	Ч., 11 сут, 1999 г.	Б., 17 сут, 1999 г.	Л., 16 сут, 2000 г.	И., 1 сут, 2000 г.	М., 1,5 мес, 2001 г.
Амоксициллин/клавуланат	I	I	I	I	R	I	I
Тикарциллин	R	R	R	R	R	R	R
Пиперациллин	S	S	S	S	R	S	S
Пиперациллин/тазобактам	S	S	S	S	R	S	S
Цефазолин	R	R	R	R	R	R	R
Цефтазидим	R	R	R	R	R	R	R
Имипенем	R	R	R	R	R	R	R
Азтреонам	R	R	R	R	R	R	R
Амикацин	R	S	S	S	S	I	S
Гентамицин	R	R	R	R	R	R	R
Ципрофлоксацин	I	I	S	S	S	S	S
Ко-тримоксазол	S	S	S	S	S	S	S

Примечание: R – резистентный, I – умеренно резистентный, S – чувствительный.

емыми, в частности, в окружающей среде стационаров лечебно-профилактических учреждений.

Некоторые хризеобактерии, главным образом *С. тепіпдоѕертісит*, относятся к оппортунистическим патогенам человека и могут вызывать развитие тяжелых, преимущественно нозокомиальных, инфекций у новорожденных и иммунокомпрометированных пациентов. Лечение их представляет определенные трудности в связи с высокой природной устойчивостью *Chryseobacterium* spp. к большинству антимикробных препаратов, традиционно используемых для лечения инфекций, вызванных грамотрицательными бактериями.

В связи с этим практические врачи должны знать о возможности участия хризеобактерий в качестве этиологического фактора в развитии инфек-

ций у человека и иметь данные об их чувствительности к антибиотикам. Это позволит назначать адекватную терапию таким пациентам.

Клинические микробиологические лаборатории, в свою очередь, должны быть готовы и иметь возможность идентифицировать *Chryseobacterium* spp., выделяемых у больных, и при необходимости в определенных клинических ситуациях исследовать их чувствительность к антибиотикам.

Учитывая возможность контаминации окружающих объектов и поверхностей в стационаре и возникновения нозокомиальных вспышек инфекций, вызванных *Chryseobacterium* spp., следует соблюдать стандартные меры предосторожности и принципы инфекционного контроля в целях профилактики распространения этого возбудителя.

Литература

- Bernardet J.F., Segers P., Vancanneyt M., et al. Cutting a Gordian knot: emended classification and description of the genus *Flavobacterium*, emended description of the family *Flavobacteriaceae*, and proposal of *Flavobacterium* hydatis, nom. nov. Int J Syst Bacteriol 1996;46:128-48.
- Schreckenberger P.C., von Gravenitz A. Acinetobacter, Achromobacter, Alcaligenes, Moraxella, Methylobacterium, and other nonfermentative Gram-negative rods. In: Murray P.R., editors. Manual of Clinical Microbiology. 7th ed. Washington: ASM Press; 1999. p. 552-4.
- 3. Genus *Flavobacterium*. In: Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T., editors. Bergey's Manual of Determinative Bacteriology. 9th ed. Baltimore: Williams & Wilkins;1994. p. 353-61.
- 4. Flavobacterium. In: Barrow G.I., Feltham R.K.A., editors. Gowan and Steel's Manual for the identification of me-

- dical bacteria. 3rd ed. Cambridge: Cambridge University Press; 1993. p. 116-7.
- 5. Pickett M.J. Methods for identification of flavobacteria. J Clin Microbiol 1989:27:2309-15.
- 6. Боронина Л.Г., Мамаев И.Л., Кукушкина М.П. и др. Антибиотикорезистентность бактерий, вызывающих инфекции новорожденных, в реанимационных отделениях. Сборник «Интенсивная терапия в педиатрии». Екатеринбург; 1999. с. 7-9.
- 7. Steinberg J.P., Del Rio C. Other Gram-negative bacilli. In: Mandell G.L., Bennett J.E., Dolin R., editors. Principles and Practice of Infectious Diseases. 5th ed. Philadelphia: Churchill Livingstone; 2000. p. 2466-7.
- 8. Liu C.E., Wong W.W., Yang S.P., et al. *Flavobacterium meningosepticum* bacteremia: an analysis of 16 cases. Zhonghua Yi Xue Za Zhi (Taipei) 1999;62:125-32.
- 9. Bloch K.C., Nadarajah R., Jacobs R. Chryseobacterium

- meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine 1997:76:30-41.
- 10. Chiu C.H., Waddingdon M., Greenberg D., et al. Atypical *Chryseobacterium meningosepticum* and meningitis and sepsis in newborns and the immunocompromised, Taiwan. Emerg Infect Dis 2000;6:481-6.
- Chang Chien H.Y., Chiu N.C., Li W.C., Huang F.Y. Characteristics of neonatal bacterial meningitis in a teaching hospital in Taiwan from 1984–1997. J Microbiol Immunol Infect 2000;33:100-4.
- Tekerekoglu M.S., Durmaz R., Ayan M., et al. Analysis of an outbreak due to *Chryseobacterium meningosepticum* in a neonatal intensive care unit. New Microbiol 2003:26:57-63.
- Hoque S.N., Graham J., Kaufmann M.E., Tabaqchali S. Chryseobacterium meningosepticum outbreak associated with colonization of water taps in neonatal intensive care unit. J Hosp Infect 2001;47:188-92.
- Bruun B., Jensen E.T., Lundstrom K., et al. Flavobacterium meningosepticum infection in a neonatal ward. Eur J Clin Microbiol Infect Dis 1989;8:509-14.
- Abrahamsen T.G., Finne P.H., Lingaas E. Flavobacterium meningosepticum in a neonatal intensive care unit. Acta Paediatr Scand 1989;78:51-5.
- 16. Tizer K., Cervia J., Dunn A., Stavola J., Noel G. Successful combination of vancomycin and rifampin therapy in a newborn with community-acquired *Flavobacterium meningosepticum* neonatal meningitis. Pediatr Infect Dis J 1995;14:916-7.
- 17. Lin C.H., Hunag F.Y. Clinical observation of neonatal meningitis caused by *F. meningosepticum*. Acta Pediatr Sinica 1991;31:171-6.
- Springer S.C., Johnson G.M. Flavobacterium meningosepticum sepsis in an infant with a diarrheal prodrome. South Med J 1999;92:225-7.
- 19. Lim L.C., Low J.A., Chan K.M. Chryseobacterium meningosepticum (Flavobacterium meningosepticum) a report of five cases in a local hospital. Ann Acad Med Singapore 1999;28:858-60.
- 20. Shivananda P.G. An unusual case of *Flavobacterium meningosepticum* pneumonia in an immunocompromised patient. Indian J Pathol Microbiol 1999;42:491-2.
- 21. Pokrywka M., Viazanko K., Medvick J., et al. A *Flavo-bacterium meningosepticum* outbreak among intensive care patients. Am J Infect Control 1993;21:139-45.
- 22. Yannelli B., Koj I.G., Cunha B.A. *Chryseobacterium meningosepticum* bacteremia secondary to central intravenous line-related infection. Am J Infect Control 1999;27:533-5.
- 23. Ashdown L.R., Previtera S. Community acquired *Flavobacterium meningosepticum* pneumonia and septicaemia. Med J Aust 1992;156:69-70.
- Sundin D., Gold B.D., Berkowitz F.E., et al. Communityacquired *Flavobacterium meningosepticum* meningitis, pneumonia, and septicemia in a normal infant. Pediatr Infect Dis J 1991;10:73-6.
- 25. Gunnarsson G., Baldursson H., Hilmarsdottir I. Septic

- arthritis caused by *Chryseobacterium meningosepticum* in an immunocompetent male. Scand J Infect Dis 2002;34:299-300.
- 26. Sztajnbok J., Troster E.J. Community-acquired *Chryseo-bacterium meningosepticum* pneumonia and sepsis in a previously healthy child. J infect 1998;37:310-2.
- Hsueh P.R., Teng L.J., Ho S.W., et al. Clinical and microbiological characteristics of *Flavobacterium indologenes* infections associated with indwelling devices. J Clin Microbiol 1996;34:1908-13.
- 28. Hsueh P.R., Teng L.J., Yang P.C., et al. Increasing incidence of nosocomial *Chryseobacterium indologenes* infections in Taiwan. Eur J Clin Microbial Infect Dis 1997;16:568-74.
- Fraser S.L., Jorgensen J.H. Reappraisal of the antimicrobial susceptibilities of *Chryseobacterium* and *Flavobacterium* species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997;41:2738-41.
- Vessilier S., Docquier J.D., Rival S., et al. Overproduction and biochemical characterization of the Chryseobacterium meningosepticum BlaB metallo-betalactamase. Antimicrob Agents Chemother 2002;46:1921-7
- 31. Bellais S., Aubert D., Naas T., Nordmann P. Molecular and biochemical heterogeneity of class B carbapenemhydrolyzing beta-lactamases in *Chryseobacterium meningosepticum*. Antimicrob Agents Chemother 2000;44:1878-86.
- 32. Bellais S., Poirel L., Naas T., et al. Genetic-biochemical analysis and distribution of the Ambler class A beta-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in *Chryseobacterium* (*Flavobacterium*) meningosepticum. Antimicrob Agents Chemother 2000;44:1-9.
- 33. Di Pentima M.C., Mason E.O., Kaplan S.L. *In vitro* antibiotic synergy against *Flavobacterium meningosepticum*: implications for therapeutic options. Clin Infect Dis 1998;26:1169-76.
- 34. Spangler S.K., Visalli M.A., Jacobs M.R., Appelbaum P.C. Susceptibilities of non-*Pseudomonas aeruginosa* gram-negative nonfermentative rods to ciprofloxacin, ofloxacin, levofloxacin, d-ofloxacin, sparfloxacin, ceftazidime, piperacillin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, and imipenem. Antimicrob Agents Chemother 1996;40:772-5.
- 35. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing; Twelfth informational supplement. NCCLS Document M100-S4 2002;22(1).
- 36. Chang J.C., Hsueh P.R., Wu J.J., et al. Antimicrobial susceptibility of flavobacteria as determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother 1997;41:1301-6.
- 37. Hsueh P.R., Chang J.C., Teng L.J., et al. Comparison of E-test and agar dilution method for antimicrobial susceptibility testing of *Flavobacterium* isolates. J Clin Microbiol 1997;35:1021-3.