

Tom 20 N₂4

Генотипы и носительство металло-бета-лактамаз среди карбапенеморезистентных *Pseudomonas aeruginosa*, выделенных у детей в г. Москве

Савинова Т.А., Лазарева А.В., Шамина О.В., Крыжановская О.А., Чеботарь И.В., Маянский Н.А.

ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России, Москва, Россия

Контактный адрес: Татьяна Александровна Савинова Эл. почта: taniasavinova@gmail.com

Ключевые слова: Pseudomonas aeruginosa, антибиотикорезистентность, карбапенемы, металло-бета-лактамазы, МЛСТ.

Цель. Охарактеризовать популяционную структуру и определить молекулярно-генетические механизмы резистентности к карбапенемам госпитальных штаммов *P. aeruginosa,* выделенных в Москве в 2012-2016 гг.

Материалы и методы. Карбапенеморезистентные изоляты были выделены в двух педиатрических стационарах г. Москвы. Чувствительность изолятов *P. aeruginosa* к антибактериальным препаратам определяли с помощью Е-тестов и диско-диффузионным методом. Для генотипирования изолятов использовали метод мультилокусного сиквенс-типирования (МЛСТ). Выявление генов металло-беталактамаз (МБЛ) проводили методом ПЦР в режиме реального времени.

Результаты. Все исследованные изоляты обладали множественной лекарственной устойчивостью. Методом МЛСТ был выявлен 21 уникальный сиквенс-тип (ST). В структуре популяции доминировали представители пяти сиквенс-типов (ST111, ST235, ST446, ST654 и ST2592), суммарно составлявшие 78% выборки карбапенеморезистентных *P. aeruginosa.* У 50 (57%) исследованных изолятов был детектирован ген МБЛ *bla*_{VIM-2}; генов других карбапенемаз, включая *bla*_{NDM} и *bla*_{MP}, выявлено не было.

Выводы. Генетическая структура исследованной популяции карбапенеморезистентных *P. aeruginosa* отличается разнообразием неродственных сиквенс-типов с доминированием небольшого числа международных клонов высокого эпидемического риска, включая ST654, ST111 и ST235. Ведущим механизмом резистентности к карбапенемам у исследованных изолятов стала продукция карбапенемазы типа VIM-2.

Genotypes and metallo-beta-lactamases carriage in carbapenem-resistant Pseudomonas aeruginosa isolated from children in Moscow

Savinova T.A., Lazareva A.V., Shamina O.V., Kryzhanovskaya O.A., Chebotar I.V., Mayanskiy N.A.

National Medical Research Center of Children's Health, Moscow, Russia

Contacts: Tatiana A. Savinova

E-mail: taniasavinova@gmail.com

Key words: *Pseudomonas aeruginosa*, antibiotic resistance, carbapenems, metallo-beta-lactamases, MLST.

Objective. To characterize the population structure and determine the genetic mechanisms of carbapenem resistance in nosocomial isolates of *P. aeruginosa* collected in Moscow in 2012-2016.

Materials and methods. Carbapenem-resistant isolates were collected in two pediatric hospitals in Moscow. Antibiotics susceptibility of *P. aeruginosa* isolates was assessed using the E-tests and disk-diffusion method. Multilocus sequence typing (MLST) was used for genotyping of the isolates. The presence of metallo-beta-lactamase (MBL) genes was determined using real-time PCR.

Results. All isolates had multidrug resistant phenotype. MLST identified 21 unique sequence types (ST). Five sequence types (ST111, ST235, ST446, ST654 and ST2592) prevailed in the population structure, composing 78% of the carbapenem resistant *P. aeruginosa*. 50 (57%) isolates carried *blavim*. 2 gene; the presence of other carbapenemase genes, including *blanim* and *blaim*, was not detected.

Conclusions. The genetic structure of carbapenem-resistant *P. aeruginosa* population is characterized by a diversity of unrelated sequence-types with the predominance of a small number of the high epidemic risk international clones: ST654, ST111 and ST235. The main carbapenem resistance mechanism of *P. aeruginosa* isolates was the production of VIM-2 carbapenemase.

КМАХ · 2018 · Том 20 · №4

Введение

Pseudomonas aeruginosa – широко распространенный возбудитель оппортунистических нозокомиальных инфекций, в том числе сепсиса, пневмонии, инфекций мочевыводящих путей. В настоящее время во всем мире растет устойчивость этого патогена к антибактериальным препаратам, в том числе карбапенемам [1]. Резистентность P. aeruginosa к этой группе антибиотиков может быть связана с нарушением транспорта препарата внутрь клетки в результате мутаций, ведущих к потере карбапенем-специфического мембранного порина OprD, что нередко сочетается с гиперпродукцией AmpC и гиперэкспрессией механизмов активного выведения эффлюксных помп (например, mexAB-oprM) [2]. Однако главную роль в устойчивости к карбапенемам играет продукция карбапенемаз, среди которых металло-бета-лактамазы (МБЛ), такие как VIM, NDM, IMP, имеют наиболее широкое распространение. Ферменты данного класса обладают высокой каталитической активностью и гидролизуют практически все бета-лактамные антибиотики. Особую опасность представляет тот факт, что продуцирующие МБЛ гены входят в состав интегронов, легко встраивающихся в плазмиды и транспозоны. Обмен мобильными генетическими элементами внутри популяции одного вида, а также между различными видами бактерий приводит к быстрому распространению резистентных штаммов [2, 3].

Целью данной работы было оценить структуру популяции карбапенеморезистентных (Карба-Р) изолятов *P. aeruginosa,* выделенных в период 2012-2016 гг. в двух стационарах г. Москвы, и выявить механизмы резистентности к карбапенемам, а именно носительство генов МБЛ blavm, blamp и blandm.

Материалы и методы

Изоляты были выделены в двух педиатрических стационарах г. Москвы: НМИЦ здоровья детей Минздрава России (С1), НИИ неотложной детской хирургии и травматологии Департамента здравоохранения г. Москвы (С2). Для определения чувствительности изолятов *P. aeruginosa* к имипенему, меропенему, цефтазидиму, цефепиму, амикацину, гентамицину и ципрофлоксацину использовали метод Е-тестов (BioMerieux, Франция), чувствительность к нетилмицину и тобра-

мицину определяли с помощью диско-диффузионного метода (Bio-Rad, США). Результаты интерпретировали, руководствуясь интерпретационными критериями Европейского комитета по определению чувствительности к антимикробным препаратам (EUCAST) [4] и клиническими рекомендациями [5]. В качестве контрольного штамма использовали *P. aeruginosa* ATCC 27653.

Популяционную структуру штаммов *P. aeruginosa* характеризовали методом мультилокусного сиквенс-типирования (МЛСТ), сиквенс-типы определяли с использованием базы данных МЛСТ [6].

Гены, кодирующие МБЛ (blavm, blavm, blavm), идентифицировали с использованием тест-наборов для ПЦР в режиме реального времени «АмплиСенс MDR MBL-FL» (ЦНИИЭ Роспотребнадзора). Определение типа VIM проводили методом секвенирования по Сэнгеру с использованием праймеров и условий, описанных ранее [7].

Статистическую обработку результатов проводили при помощи программы IBM SPSS Statistics, версия 21. Различия в структуре генотипов между двумя стационарами оценивали с помощью критерия χ^2 и считали статистически значимыми при p<0,05.

Результаты

Всего было исследовано 87 Карба-Р изолятов *Р. аегидіпоза*, которые были резистентны (минимальная подавляющая концентрация (МПК) >8 мг/л) к меропенему и/или имипенему. Из них 78 (90%) изолятов были резистентны к обоим карбапенемам, еще восемь (9%) изолятов обладали умеренной устойчивостью к меропенему (МПК 4-8 мг/л) и один (1%) изолят был умеренно устойчив к имипенему (МПК 8 мг/л). Максимальную МПК ≥32 мг/л меропенема и имипенема имели 85 (98%) и 78 (90%) изолятов соответственно. Большинство изолятов было получено из респираторных образцов (54%), меньшую долю имели изоляты, выделенные из стомы/раны (22%), мочи (16%), крови (6%) и ликвора (2%). Медиана возраста пациентов-источников изолятов составила 4,4 года (Р25 11 месяцев, Р75 14,7 лет).

Анализ чувствительности Карба-Р *P. aeruginosa* к некарбапенемным антибиотикам показал их высокую устойчивость ко всем группам исследованных препаратов, включая цефалоспорины, аминогликозиды и

Таблица 1. Устойчивость Карба-Р изолятов P. aeruginosa к некарбапенемным антибиотикам

Антибиотик	Резистентность, МПК (мг/л) ^а	МПК ₅₀ (мг/л)	МПК ₉₀ (мг/л)	Доля (n) резистентных изолятов
Цефтазидим	>8	16	≥256	67% (58)
Цефепим	>8	48	≥256	85% (74)
Амикацин	>16	≥256	≥256	89% (77)
Гентамицин	>4	≥256	≥256	82% (71)
Нетилмицин ⁶	_	_	_	76% (66)
Тобрамицин ⁶	-	-	-	77% (67)
Ципрофлоксацин	>1	≥32	≥32	77% (67)

^а Критерии EUCAST [4].

⁶ Чувствительность определяли с помощью диско-диффузионного метода.

АНТИБИОТИКОРЕЗИСТЕНТНОСТЬ КМАХ · 2018 · Tom 20 · №4

фторхинолоны (Таблица 1). Наиболее высокая резистентность наблюдалась к амикацину, гентамицину и цефепиму (>80% устойчивых изолятов). Таким образом, все исследованные изоляты обладали множественной лекарственной устойчивостью (МЛУ).

Характеристика популяционной структуры Карба-Р изолятов P. aeruginosa

Все выделенные изоляты были подвергнуты генотипированию с помощью МЛСТ. Всего был выявлен 21 уникальный сиквенс-тип (Таблица 2). В структуре с большим отрывом лидировали представители пяти сиквенс-типов, включая ST111, ST235, ST446, ST654

Таблица 2. Распределение генотипов Карба-Р изолятов *P. aeruginosa*

ST	Число изолятов	Доля	Накопленный %	
654	26	30%	30%	
235	20	23%	53%	
111	11	13%	66%	
2592ª	6	7%	72%	
446	5	6%	78%	
244	2	2%	80%	
1211	2	2%	83%	
1567	2	2%	85%	
Другие ⁶	13	15%	100%	
Итого:	87	100%		

Изоляты расположены в порядке убывания частоты встречаемости. Представлены сиквенс-типы с частотой >2 изолятов.

и ST2592, которые суммарно составляли 78% выборки Карба-Р *P. aeruginosa;* из них самыми распространенными стали ST654 (30%), ST235 (23%) и ST111 (13%) (Таблица 2). Оставшиеся 16 сиквенс-типов формировали 22% выборки.

Популяционная структура Карба-Р P. aeruginosa в двух исследованных стационарах значимо различалась (χ^2 =46, p=0,001). В стационаре C1 было обнаружено 7, а в стационаре C2 – 16 различных сиквенс-типов. Два наиболее распространенных генотипа, ST235 и ST654, были представлены в обоих стационарах, тогда как ST111 присутствовал только в C1, а уникальным для C2 стал ST446; для C1 был эндемичным также ST2592 (Таблица 3). Одиннадцать из 16 сиквенс-типов, обнаруженных в стационаре C2, были представлены единичными изолятами, доля которых в общем числе изолятов из C2 составила 25%.

Носительство МБЛ-карбапенемаз

У 50 (57%) исследованных изолятов Карба-Р P. aeruginosa был выявлен ген МБЛ bla_{VIM} (Таблица 3); во всех случаях VIM-карбапенемазы относились к типу 2 (bla_{VIM-2}). Носительство других карбапенемаз, включая bla_{NDM} и bla_{IMP} , обнаружено не было. Продуцентами VIM-2-подобных карбапенемаз были представители трех сиквенс-типов: ST111, ST235 и ST654. Носителями bla_{VIM-2} были все изоляты ST111 и ST654, а также 13 (65%) ST235-изолятов. В структуре VIM-2-позитивных изолятов лидировал ST654 (52%, 26/50), ST111 и ST235 занимали долю 22% (11/50) и 26% (13/50) соответственно.

Обсуждение

В настоящей работе мы проанализировали клональную структуру Карба-Р изолятов *P. aeruginosa*, полученных в двух педиатрических стационарах г. Москвы. В исследованной популяции отмечалось большое раз-

Таблица 3. Распределение Карба-Р изолятов *P. aeruginosa* в соответствии с генотипом, распространенностью в стационарах и носительством *blaym*₂

ST	n (%)	Носители blavim-2a	C 1	C2	p ⁶
654	26 (30%)	26 (100%)	16 (37%)	10 (23%)	>0,05
235	20 (23%)	13 (65%)	6 (14%)	14 (32%)	0,048
111	11 (13%)	11 (100%)	11 (26%)	0	<0,001
2592	6 (7%)	0	6 (14%)	0	0,01
446	5 (6%)	0	0	5 (11%)	0,023
244	2 (2%)	0	2 (5%)	0	>0,05
1211	2 (2%)	0	0	2 (5%)	>0,05
1567	2 (2%)	0	0	2 (5%)	>0,05
Другие	13 (15%)	0	2 (5%) ^B	11 (25%)	0,008
Всего	87 (100%)	50 (57%)	43 (100%)	44 (100%)	

Представлены сиквенс-типы с частотой ≥2. Сиквенс-типы расположены в порядке убывания частоты встречаемости. ST – сиквенс-тип, C1 – стационар 1, C2 – стационар 2.

^а Впервые описанный сиквенс-тип, однолокусный вариант ST357 (новая аллель *aroE*).

⁶ Другие сиквенс-типы (n=1): 233, 234, 245, 260, 399, 562, 612, 644, 1031, 1033, 1930, 2049 и 2757 (впервые описанный сиквенстип, новая аллель *aroE*).

^а В скобках указана доля *blav_{IM-2}-*положительных изолятов от общего числа изолятов соответствующего сиквенс-типа.

 $^{^6}$ Значение p указывает на значимость различий (критерий χ^2) между частотой встречаемости соответствующего сиквенс-типа в двух стационарах; значимые различия выделены жирным шрифтом.

^в Всего два сиквенс-типа: ST234, ST1930; каждый представлен одним изолятом.

F Всего 11 сиквенс-типов: 233, 245 260, 399, 562, 612, 644, 1031, 1033, 2049, 2757; каждый представлен одним изолятом.

КМАХ · 2018 · Том 20 · №4

нообразие генотипов, включавшее 21 индивидуальный сиквенс-тип, однако доминировало небольшое число международных клонов высокого эпидемического риска: ST111, ST235, ST654 и ST357 (последний был представлен впервые описанным однолокусным вариантом – ST2592).

Ведущим генотипом в исследованной нами выборке стал ST654, который присутствовал в обоих стационарах и в целом составил долю, равную 30%. Все ST654-изоляты являлись носителями blavim-2. Этот сиквенс-тип относится к числу международных клонов, хотя его распространенность ограничена по сравнению с ST111 и ST235 [8]. ST654 появился в циркуляции не позднее 2006 г. и описан в Великобритании [9], Польше [10], Франции [11], Аргентине [12] и Сингапуре, для которого данный генотип эндемичен [13]. Единичные изоляты ST654 были импортированы в Швецию (как предполагается, из Туниса) [14] и Канаду (изолят от пациента, находившегося на длительном лечении в Индии) [15]. В цитированных работах описаны ST654 P. aeruginosa с различными типами МБЛ, включая IMP, KPC, NDM и VIM. В нашей выборке ST654изоляты впервые получены в 2013 г. в стационаре С1, а в 2014 г. появились в стационаре С2, став наиболее распространенным генотипом исследованных Карба-Р P. aeruginosa.

В ходе работы мы выявили новый ST2592, который является однолокусным вариантом международного клона высокого риска ST357. Клон ST357 получил распространение в центральной Европе [16], Дании [17], Великобритании [9], Китае [18], Японии [19]. ST357-изоляты, несущие карбапенемазу IMP-7, доминируют в структуре МБЛ-продуцирующих госпитальных изолятов *P. aeruginosa* в Чехии [20]. Для ST357 характерно носительство VIM- и IMP-подобных карбапенемаз, однако у выделенных нами Карба-Р изолятов, относящихся к ST2592, их обнаружено не было.

Заметное представительство (6%) в общей популяции Карба-Р *Р. aeruginosa* имел эндемичный для стационара C2 генотип ST446. Этот генотип был описан ранее в одной из клиник г. Москвы в период 2006-2010 гг. [21]. По данным ресурса pubmlst.org, ST446 встречался также в Австралии, Бразилии, Испании и Франции [6]. Все ST446-изоляты были МБЛ-отрицательными.

Клон *P. aeruginosa* ST235 имеет глобальное распространение и является доминирующим генотипом Карба-Р форм этих бактерий во многих странах мира, включая Россию [8, 22, 23]. Карбапенеморезистентность ST235 в первую очередь ассоциируется с носительством генов различных типов МБЛ в зависимости от региона, но преобладают VIM-подобные карбапенемазы.

Российские данные о популяционной структуре Карба-Р МБЛ-продуцирующих *Р. aeruginosa* были представлены Эйдельштейном М.В. и соавт. [23]. В этом крупнейшем многоцентровом исследовании авторы проанализировали более 3400 клинических изолятов *Р. aeruginosa*, выделенных в России в 2002-2010 гг. Доля МБЛ-позитивных изолятов за время наблюдения увеличилась с 4,5% в 2002 г. до 28,7% в 2008-2010 гг., причем среди них доминировали *Р. aeruginosa* генотипа ST235, которые составляли 685 из 710 (96,5%)

МБЛ-позитивных изолятов; 707 из них были носителями bla_{VIM-2} . Остальные изоляты принадлежали к ST234 (n=23), ST244 и ST276 (по одному изоляту). В нашем исследовании из числа изолятов 2012-2016 гг. носителями VIM-2 были 59% Карба-Р P. aeruginosa, других типов МБЛ обнаружено не было. По данным Эйдельштейна M.В. и соавт. [23], >95% МБЛ-позитивных изолятов представлял ST235 (генотипирование Карба-Р P. aeruginosa, не являющихся носителями МБЛ, авторы не проводили). В нашей выборке VIM-несущих P. aeruginosa лидировал ST654 (52%), доля ST111 и ST235 составила 22% и 26% соответственно.

Таким образом, в отличие от фактически моноклональной популяции Карба-Р МБЛ-продуцирующих госпитальных штаммов *P. aeruginosa* в 2002-2010 гг. [23], мы показали наличие как минимум трех близких по распространенности клонов. Эти различия можно отнести на счет незначительного представительства московских изолятов в цитируемой работе (всего 17 изолятов, что составило 2,4% выборки МБЛ-несущих изолятов; все относились к ST235). С другой стороны, вполне вероятно, что в последние годы в московском регионе произошла диверсификация популяционной структуры *P. aeruginosa*, проявившаяся в увеличении клонального разнообразия.

Выявленная нами структура популяции (21 неродственный генотип с преобладанием пяти генотипов: ST111, ST235, ST446, ST654, ST2592) в целом соответствует сформировавшимся представлениям о популяционной структуре Карба-Р P. aeruginosa. Ее характеризуют как эпидемическую, что означает наличие небольшого числа успешных клонов, имеющих глобальное распространение, на фоне выраженного разнообразия генотипов [8, 24]. Подобная структура популяции формируется в результате отбора из большого числа исходных, сравнительно редких неродственных клонов, обладающих высокой частотой рекомбинаций и способных приспосабливаться к меняющимся условиям существования. Такие «адаптивные» клоны со временем приобретают широкое распространение в окружающей среде, в связи с чем начинают доминировать в популяции клинически значимых штаммов, отвечая на давление антибиотиков формированием МЛУ.

Отметим, что эпидемическая популяционная структура *P. aeruginosa* с МЛУ-фенотипом отличается от других бактерий, в частности, *A. baumannii*, популяция МЛУ-штаммов которых характеризуется выраженной клональностью [8, 25].

Таким образом, наше исследование показало широкое распространение (>50%) носительства VIM-2 карбапенемазы среди Карба-Р P. aeruginosa, что делает ее наличие ведущим механизмом устойчивости к карбапенемам у госпитальных штаммов этого возбудителя. Носительство bla_{VIM-2} было ограничено сиквенс-типами ST111, ST235 и ST654. В то же время, у значительной доли Карба-Р изолятов механизмы резистентности остаются нерасшифрованными. Все это свидетельствует о необходимости дальнейших исследований, направленных на мониторинг устойчивости к антибиотикам и популяционной эволюции госпитальных штаммов P. aeruginosa на территории Poccuu.

SUOTUKOPE3UCTEHTHOCTЬ KMAX·2018·Tom 20·№4

Литература

- Kozlov R.S., Golub A.V., Dekhnich A.V., SMART Study Group. Antimicrobial Resistance of Gram-negative Microorganisms Causing Complicated Intraabdominal Infections in Russia. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2015;17(3):227-234. Russian. (Козлов Р.С., Голуб А.В., Дехнич А.В., исследовательская группа SMART. Антибиотикорезистентность грамотрицательных возбудителей осложненных интраабдоминальных инфекций в России. Клиническая микробиология и антимикробная химиотерапия. 2015;17(3):227-2341.
- Breidenstein E.B., de la Fuente-Nunez C., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419-426.
- Chebotar I.V., Bocharova Yu.A., Mayansky N.A. Mechanisms and regulation of antimicrobial resistance in *Pseudomonas aeruginosa*. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2017;19(4):308-319. Russian. (Чеботарь И.В., Бочарова Ю.А., Маянский Н.А. Механизмы резистентности *Pseudomonas аегидіпоза* к антибиотикам и их регуляция. Клиническая микробиология и антимикробная химиотерапия. 2017;19(4):308-319).
- 4. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available at: www.eucast.org.
- Clinical recommendations. Determination of the susceptibility of microorganisms to antimicrobials, 2017. Available at: www.antibiotic. ru/minzdrav/files/docs/clrec-dsma2017. Russian. (Клинические рекомендации. Определение чувствительности микроорганизмов к антимикробным препаратам, 2015. Доступно по адресу: www. antibiotic.ru/minzdrav/files/docs/clrec-dsma2017).
- 6. Pseudomonas aeruginosa MLST Database [database online]. Available at: https://pubmlst.org/paeruginosa.
- 7. Shibata N., Doi Y., Yamane K., et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;41(12):5407-5413.
- Woodford N., Turton J.F., Livermore D.M. Multiresistant Gramnegative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):736-755.
- Wright L.L., Turton J.F., Livermore D.M., Hopkins K.L., Woodford N. Dominance of international 'high-risk clones' among metallo-βlactamase-producing *Pseudomonas aeruginosa* in the UK. J Antimicrob Chemother. 2015;70(1):103-110.
- Pobiega M., Maciąg J., Chmielarczyk A. Molecular characterization of carbapenem-resistant *Pseudomonas aeruginosa* strains isolated from patients with urinary tract infections in Southern Poland. Diagn Microbiol Infect Dis. 2015;83(3):295-297.
- Rojo-Bezares B., Cavalié L., Dubois D., et al. Characterization of carbapenem resistance mechanisms and integrons in *Pseudomonas* aeruginosa strains from blood samples in a French hospital. J Med Microbiol. 2016;65(4):311-319.
- Pasteran F., Faccone D., Gomez S., et al. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing *Pseudomonas aeruginosa* in Argentina. J Antimicrob Chemother. 2012;67(5):1291-1293.
- Koh T.H., Khoo C.T., Tan T.T., et al. Multilocus sequence types of carbapenem-resistant *Pseudomonas aeruginosa* in Singapore carrying

- metallo-beta-lactamase genes, including the novel bla(IMP-26) gene. J Clin Microbiol. 2010;48(7):2563-2564.
- Samuelsen O., Toleman M.A., Sundsfjord A., et al. Molecular epidemiology of metallo-beta-lactamase-producing *Pseudomonas* aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother. 2010;54(1):346-352.
- Mataseje L.F., Peirano G., Church D.L., et al. Colistin-Nonsusceptible Pseudomonas aeruginosa Sequence Type 654 with blaNDM-1 Arrives in North America. Antimicrob Agents Chemother. 2016;60(3):1794-1800.
- Hrabák J., Cervená D., Izdebski R., et al. Regional spread of Pseudomonas aeruginosa ST357 producing IMP-7 metallo-βlactamase in Central Europe. J Clin Microbiol. 2011;49(1):474-475.
- Hammerum A.M., Jakobsen L., Hansen F., et al. Characterisation of an IMP-7-producing ST357 Pseudomonas aeruginosa isolate detected in Denmark using whole genome sequencing. Int J Antimicrob Agents. 2015;45(2):200-201.
- Ji J., Wang J., Zhou Z., et al. Multilocus sequence typing reveals genetic diversity of carbapenem- or ceftazidime-nonsusceptible Pseudomonas aeruginosa in China. Antimicrob Agents Chemother. 2013;57(11):5697-5700.
- Mano Y., Saga T., Ishii Y., et al. Molecular analysis of the integrons of metallo-β-lactamase-producing *Pseudomonas aeruginosa* isolates collected by nationwide surveillance programs across Japan. BMC Microbiol. 2015;15:41.
- Papagiannitsis C.C., Medvecky M., Chudejova K., et al. Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob Agents Chemother. 2017;61(12):e01811-17.
- Avetisyan L.R., Voronina O.L., Chernuha M.Yu., et al. Persistence of Pseudomonas aeruginosa strains in patients of the Federal Research Center of Transplantology and Artificial Organs. Zhurnal mikrobiologii, jepidemiologii i immunobiologii. 2010;4:99-104. Russian. (Аветисян Л.Р., Воронина О.Л., Чернуха М.Ю. и соавт. Персистенции штаммов Pseudomonas aeruginosa среди пациентов ФНЦ трансплантологии и искусственных органов. Журнал микробиологии, эпидемиологии и иммунобиологии. 2010;4:99-104.)
- Treepong P., Kos V.N., Guyeux C., et al. Global emergence of the widespread *Pseudomonas aeruginosa* ST235 clone. Clin Microbiol Infect. 2018;24(3):258-266.
- Edelstein M.V., Skleenova E.N., Shevchenko O.V., et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis. 2013;13(10):867-876.
- Pirnay J.P., De Vos D., Cochez C., et al. Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol. 2002;4(12):898-911.
- Mayanskiy N., Chebotar I., Alyabieva N., et al. Emergence of the Uncommon Clone ST944/ST78 Carrying blaOXA-40-like and blaCTX-M-like Genes Among Carbapenem-Nonsusceptible Acinetobacter baumannii in Moscow, Russia. Microb Drug Resist. 2017;23(7):864-870.