Abstract
Over the last years, influence of the human microbiome on the emergence of non-infectious chronic diseases including psoriasis has become a popular research field. A significant goal is to get an answer to the following question: are changes in the skin microbiota a cause or consequence of inflammatory process in psoriasis? This review provides an integrated approach to the problem and study of relationships between changes in microbiological landscape and microecological features of the skin. During the analysis of scientific literature, such aspects were studied as the living conditions of skin microorganisms, the participation of microbiota in maintaining microecological homeostasis of the skin, impairments of the skin microbiota functions during psoriasis. In particular, various patterns of deviations in the composition of microbiological communities are considered, such as an increase in the ratio of individual pathogens (Staphylococcus aureus and Streptococcus pyogenes) and a decrease in the number of microorganisms that limit the growth of pathogenic flora (Staphylococcus epidermidis and Cutibacterium acnes). This review also focuses on certain contradictions in various studies of the skin microbiota in psoriasis, which are most likely to be caused by variable methodological approaches. It is crucial to develop ways of studying human skin microbiota structure, particularly at the strain level, in order to define microbiological predictors of remission and exacerbations, as well as to evaluate treatment efficacy.
Samara State Medical University, Samara, Russia
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
Samara State Medical University, Samara, Russia
Samara State Medical University, Samara, Russia
Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
-
1.
Capon F. The genetic basis of psoriasis. Int J Mol Sci. 2017;18(12):2526.
DOI: 10.3390/ijms18122526
-
2.
Perry M. Psoriasis: an overview. Br J Nurs. 2024;33(15): 686-692.
DOI: 10.12968/bjon.2024.0112
-
3.
Liu S., He M., Jiang J., Duan X., Chai B., Zhang J., et al. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal. 2024;22(1):108.
DOI: 10.1186/s12964-023-01381-0
-
4.
Guo J., Zhang H., Lin W., Lu L., Su J., Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther. 2023;8(1):437.
DOI: 10.1038/s41392-023-01655-6
-
5.
Bakhlykova E.A., Filimonkova N.N., Matusevich S.L., Kovkova G.Y. To the question of the pathogenesis vulgaris and pustular psoriasis. Medical science and education of Ural. 2015;16(3):173-176. Russian.
-
6.
Griffiths C.E.M., Armstrong A.W., Gudjonsson J.E., Barker J.N.W.N. Psoriasis. Lancet. 2021;397(10281): 1301-1315.
DOI: 10.1016/S0140-6736(20)32549-6
-
7.
Kamiya K., Kishimoto M., Sugai J., Komine M., Ohtsuki M. Risk factors for the development of psoriasis. Int J Mol Sci. 2019;20(18):4347.
DOI: 10.3390/ijms20184347
-
8.
Polak K., Bergler-Czop B., Szczepanek M., Wojciechowska K., Frątczak A., Kiss N. Psoriasis and gut microbiomecurrent state of art. Int J Mol Sci. 2021;22(9):4529.
DOI: 10.3390/ijms22094529
-
9.
Carmona-Cruz S., Orozco-Covarrubias L., Sáez-de-Ocariz M. The human skin microbiome in selected cutaneous diseases. Front Cell Infect Microbiol. 2022;12:834135.
DOI: 10.3389/fcimb.2022.834135
-
10.
Xiao S., Zhang G., Jiang C., Liu X., Wang X., Li Y., et al. Deciphering gut microbiota dysbiosis and corresponding genetic and metabolic dysregulation in psoriasis patients using metagenomics sequencing. Front Cell Infect Microbiol. 2021;11:605825.
DOI: 10.3389/fcimb.2021.605825
-
11.
Zhang X., Shi L., Sun T., Guo K., Geng S. Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients. BMC Microbiol. 2021;21(1):78.
DOI: 10.1186/s12866-021-02125-1
-
12.
Buhaș M.C., Gavrilaș L.I., Candrea R., Cătinean A., Mocan A., Miere, D., et al. Gut microbiota in psoriasis. Nutrients. 2022;14(14):2970.
DOI: 10.3390/nu14142970
-
13.
Tett A., Pasolli E., Farina S., Truong D.T., Asnicar F., Zolfo M., et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes. 2017;3:14.
DOI: 10.1038/s41522-017-0022-5
-
14.
Gupta M., Weinberg J.M., Yamauchi P.S., Patil A., Grabbe S., Goldust M. Psoriasis: embarking a dynamic shift in the skin microbiota. J Cosmet Dermatol. 2022;21(4):1402-1406.
DOI: 10.1111/jocd.14273
-
15.
Zákostelská Z., Málková J., Klimešová K., Rossmann P., Hornová M., Novosádová I., et al. Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS One. 2016;11(7):e0159539.
DOI: 10.1371/journal.pone.0159539
-
16.
Nithya S., Radhika T., Jeddy N. Loricrin – an overview. J Oral Maxillofac Pathol. 2015;19(1):64-68.
DOI: 10.4103/0973-029X.157204
-
17.
Matard B., Meylheuc T., Briandet R., Casin I., Assouly P., Cavelier-balloy B., Reygagne P. First evidence of bacterial biofilms in the anaerobe part of scalp hair follicles: a pilot comparative study in folliculitis decalvans. J Eur Acad Dermatol Venereol. 2013;27(7):853-60.
DOI: 10.1111/j.1468-3083.2012.04591
-
18.
Chen Y.E., Fischbach M.A., Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553(7689):427-436.
DOI: 10.1038/nature25177
-
19.
Grice E.A., Kong H.H., Conlan S., Deming C.B., Davis J., Young A.C., et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931): 1190-1192.
DOI: 10.1126/science.1171700
-
20.
Rosenthal M., Goldberg D., Aiello A., Larson E., Foxman B. Skin microbiota: microbial community structure and its potential association with health and disease. Infect Genet Evol. 2011;11(5):839-848.
DOI: 10.1016/j.meegid.2011.03.022.
-
21.
Schommer N.N., Gallo R.L. Structure and function of the human skin microbiome. Trends Microbiol. 2013; 21(12):660-668.
DOI: 10.1016/j.tim.2013.10.001
-
22.
Chu D.M., Ma J., Prince A.L., Antony K.M., Seferovic M.D., Aagaard K.M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314-326.
DOI: 10.1038/nm.4272
-
23.
Oh J., Conlan S., Polley E.C., Segre J.A., Kong H.H. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012;4(10):77.
DOI: 10.1186/gm378
-
24.
Oh J., Byrd A.L., Park M., NISC Comparative Sequencing Program, Kong H.H., Segre J.A. Temporal stability of the human skin microbiome. Cell. 2016;165(4):854-866.
DOI: 10.1016/j.cell.2016.04.008
-
25.
Sanford J.A., Zhang L.J., Williams M.R., Gangoiti J.A., Huang C.M., Gallo R.L. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol. 2016;1(4):eaah4609.
DOI: 10.1126/sciimmunol.aah4609
-
26.
Flowers L., Grice E.A. The skin microbiota: balancing risk and reward. Cell Host Microbe. 2020;28(2):190-200.
DOI: 10.1016/j.chom.2020.06.017
-
27.
Scholz C.F.P., Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422-4432.
DOI: 10.1099/ijsem.0.001367
-
28.
Findley K., Oh J., Yang J., Conlan S., Deming C., Meyer J.A., et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367-370.
DOI: 10.1038/nature12171
-
29.
Saunders C.W., Scheynius A., Heitman J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog. 2012;8(6):e1002701.
DOI: 10.1371/journal.ppat.1002701
-
30.
Byrd A.L., Deming C., Cassidy S.K.B., Harrison O.J., Ng W.I., Conlan S., et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651.
DOI: 10.1126/scitranslmed.aal4651
-
31.
Belkaid Y., Segre J.A. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954-959.
DOI: 10.1126/science.1260144
-
32.
Shu M., Wang Y., Yu J., Kuo S., Coda A., Jiang Y., et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013;8(2):e55380.
DOI: 10.1371/journal.pone.0055380
-
33.
Youn S.H., Choi C.W., Choi J.W., Youn S.W. The skin surface pH and its different influence on the development of acne lesion according to gender and age. Skin Res Technol. 2013;19(2):131-136.
DOI: 10.1111/srt.12023
-
34.
Yu Y., Champer J., Agak G.W., Kao S., Modlin R.L., Kim J. Different Propionibacterium acnes phylotypes induce distinct immune responses and express unique surface and secreted proteomes. J Invest Dermatol. 2016;136(11):2221-2228.
DOI: 10.1016/j.jid.2016.06.615
-
35.
Iwase T., Uehara Y., Shinji H., Tajima A., Seo H., Takada K., et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346-349.
DOI: 10.1038/nature09074
-
36.
Zipperer A., Konnerth M.C., Laux C., Berscheid A., Janek D., Weidenmaier C., et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511-516.
DOI: 10.1038/nature18634
-
37.
O'Sullivan J.N., Rea M.C., O'Connor P.M., Hill C., Ross R.P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol. 2019;95(2):fiy241.
DOI: 10.1093/femsec/fiy241
-
38.
O'Neill A.M., Nakatsuji T., Hayachi A., Williams M.R., Mills R.H., Gonzalez D.J., et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes. J Invest Dermatol. 2020;140(8):1619-1628.
DOI: 10.1016/j.jid.2019.12.026
-
39.
Williams M.R., Costa S.K., Zaramela L.S., Khalil S., Todd D.A., Winter H.L., et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. 2019;11(490):eaat8329.
DOI: 10.1126/scitranslmed.aat8329
-
40.
Ramsey M.M., Freire M.O., Gabrilska R.A., Rumbaugh K.P., Lemon K.P. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Microbiol. 2016;7:1230.
DOI: 10.3389/fmicb.2016.01230
-
41.
Hardy B.L., Dickey S.W., Plaut R.D., Riggins D.P., Stibitz S., Otto M., et al. Corynebacterium pseudodiphtheriticum exploits Staphylococcus aureus virulence components in a novel polymicrobial defense strategy. mBio. 2019;10(1):e02491-18.
DOI: 10.1128/mBio.02491-18
-
42.
Bomar L., Brugger S.D., Yost B.H., Davies S.S., Lemon K.P. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio. 2016;7(1):e01725-15.
DOI: 10.1128/mBio.01725-15
-
43.
Scharschmidt T.C., Vasquez K.S., Pauli M.L., Leitner E.G., Chu K., Truong H.A., et al. Commensal microbes and hair follicle morphogenesis coordinately drive treg migration into neonatal skin. Cell Host Microbe. 2017;21(4):467-477.
DOI: 10.1016/j.chom.2017.03.001
-
44.
Lai Y., Cogen A.L., Radek K.A., Park H.J., Macleod D.T., Leichtle A., et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211-2221.
DOI: 10.1038/jid.2010.123
-
45.
Nakatsuji T., Chen T.H., Narala S., Chun K.A., Two A.M., Yun T., et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680.
DOI: 10.1126/scitranslmed.aah4680
-
46.
Naik S., Bouladoux N., Linehan J.L., Han S.J., Harrison O.J., Wilhelm C., et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104-108.
DOI: 10.1038/nature14052
-
47.
Cheng B.L., Nielsen T.B., Pantapalangkoor P., Zhao F., Lee J.C., Montgomery C.P., et al. Evaluation of serotypes 5 and 8 capsular polysaccharides in protection against Staphylococcus aureus in murine models of infection. Hum Vaccin Immunother. 2017;13(7):1609-1614.
DOI: 10.1080/21645515.2017.1304334
-
48.
Vallhov H., Johansson C., Veerman R.E., Scheynius A. Extracellular vesicles released from the skin commensal yeast Malassezia sympodialis activate human primary keratinocytes. Front Cell Infect Microbiol. 2020;10:6.
DOI: 10.3389/fcimb.2020.00006
-
49.
Xia X., Li Z., Liu K., Wu Y., Jiang D., Lai Y. Staphylococcal LTA-induced miR-143 inhibits Propionibacterium acnesmediated inflammatory response in skin. J Invest Dermatol. 2016;136(3):621-630.
DOI: 10.1016/j.jid.2015.12.024
-
50.
Tomic-Canic M., Burgess J.L., O'Neill K.E., Strbo N., Pastar I. Skin microbiota and its interplay with wound healing. Am J Clin Dermatol. 2020;21(Suppl. 1):36-43.
DOI: 10.1007/s40257-020-00536-w
-
51.
Wang G., Sweren E., Liu H., Wier E., Alphonse M.P., Chen R., et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe. 2021;29(5):777-791.
DOI: 10.1016/j.chom.2021.03.003
-
52.
Loesche M., Gardner S.E., Kalan L., Horwinski J., Zheng Q., Hodkinson B.P., et al. Temporal stability in chronic wound microbiota is associated with poor healing. J Invest Dermatol. 2017;137(1):237-244.
DOI: 10.1016/j.jid.2016.08.009
-
53.
Bakhlykova E.A., Filimonkova N.N., Timokhina T.Kh., Kurlovich N.A. Skin microbiota in patients with psoriasis vulgaris and pustular psoriasis. Vestnik dermatologii i venerologii. 2016;2:47-54. Russian.
DOI: 10.25208/0042-4609-2016-92-2-47-54
-
54.
Elfatoiki F.Z., El Azhari M., El Kettani A., Serhier Z., Othmani M.B., Timinouni M., et al. Psoriasis and Staphylococcus aureus skin colonization in Moroccan patients. Pan Afr Med J. 2016;23:33.
DOI: 10.11604/pamj.2016.23.33.7198
-
55.
Ng C.Y., Huang Y.H., Chu C.F., Wu T.C., Liu S.H. Risks for Staphylococcus aureus colonization in patients with psoriasis: a systematic review and meta-analysis. Br J Dermatol. 2017;177(4):967-977.
DOI: 10.1111/bjd.15366
-
56.
Fahlén A., Engstrand L., Baker B.S., Powles A., Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304(1):15-22.
DOI: 10.1007/s00403-011-1189-x
-
57.
McLaughlin J., Watterson S., Layton A.M., Bjourson A.J., Barnard E., McDowell A. Propionibacterium acnes and acne vulgaris: new insights from the integration of population genetic, multi-omic, biochemical and hostmicrobe studies. Microorganisms. 2019;7(5):128.
DOI: 10.3390/microorganisms7050128
-
58.
Kayiran M.A., Sahin E., Koçoğlu E., Sezerman O.U., Gürel M.S., Karadağ A.S. Is cutaneous microbiota a player in disease pathogenesis? Comparison of cutaneous microbiota in psoriasis and seborrheic dermatitis with scalp involvement. Indian J Dermatol Venereol Leprol. 2022;88(6):738-748.
DOI: 10.25259/IJDVL_323_21
-
59.
Fyhrquist N., Muirhead G., Prast-Nielsen S., Jeanmougin M., Olah P., Skoog T., et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun. 2019;10(1):4703.
DOI: 10.1038/s41467-019-12253-y
-
60.
Fry L., Baker B.S., Powles A.V., Fahlen A., Engstrand L. Is chronic plaque psoriasis triggered by microbiota in the skin? Br J Dermatol. 2013;169(1):47-52.
DOI: 10.1111/bjd.12322
-
61.
Gomez-Moyano E., Crespo-Erchiga V., Martínez-Pilar L., Godoy Diaz D., Martínez-García S., Lova Navarro M., et al. Do Malassezia species play a role in exacerbation of scalp psoriasis? J Mycol Med. 2014;24(2):87-92.
DOI: 10.1016/j.mycmed.2013.10.007
-
62.
Lewis D.J., Chan W.H., Hinojosa T., Hsu S., Feldman S.R. Mechanisms of microbial pathogenesis and the role of the skin microbiome in psoriasis: a review. Clin Dermatol. 2019;37(2):160-166.
DOI: 10.1016/j.clindermatol.2019.01.011
-
63.
Takemoto A., Cho O., Morohoshi Y., Sugita T., Muto M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol. 2015;42(2):166-170.
DOI: 10.1111/1346-8138.12739
-
64.
Sennikova S.V., Toptygina A.P., Voropaeva E.A. Differences in the spectrum of skin microbiota and parameters of local immunity in the focus of inflammation in dermatological patients from healthy people. Russian immunological journal. 2023;26(4):477-474. Russian.
DOI: 10.46235/1028-7221-13086-DIT
-
65.
Loesche M.A., Farahi K., Capone K., Fakharzadeh S., Blauvelt A., Duffin K.C., et al. Longitudinal study of the psoriasis-associated skin microbiome during therapy with ustekinumab in a randomized phase 3b clinical trial. J Invest Dermatol. 2018;138(9):1973-1981.
DOI: 10.1016/j.jid.2018.03.1501
-
66.
van Rensburg J.J., Lin H., Gao X., Toh E., Fortney K.R., Ellinger S., et al. The human skin microbiome associates with the outcome of and is influenced by bacterial infection. mBio. 2015;6(5):e01315-15.
DOI: 10.1128/mBio.01315-15
-
67.
Quan C., Chen X.Y., Li X., Xue F., Chen L.H., Liu N., et al. Psoriatic lesions are characterized by higher bacterial load and imbalance between Cutibacterium and Corynebacterium. J Am Acad Dermatol. 2020;82(4):955-961.
DOI: 10.1016/j.jaad.2019.06.024
-
68.
Yan D., Issa N., Afifi L., Jeon C., Chang H.W., Liao W. The role of the skin and gut microbiome in psoriatic disease. Curr Dermatol Rep. 2017;6(2):94-103.
DOI: 10.1007/s13671-017-0178-5
-
69.
Olejniczak-Staruch I., Ciążyńska M., Sobolewska-Sztychny D., Narbutt J., Skibińska M., Lesiak A. Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. Int J Mol Sci. 2021;22(8):3998.
DOI: 10.3390/ijms22083998
-
70.
Alekseyenko A.V., Perez-Perez G.I., De Souza A., Strober B., Gao Z., Bihan M., et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31.
DOI: 10.1186/2049-2618-1-31
-
71.
Boehncke W.H., Schön M.P. Psoriasis. Lancet. 2015;386(9997):983-994.
DOI: 10.1016/S0140-6736(14)61909-7
-
72.
Egert M., Simmering R., Riedel C.U. The association of the skin microbiota with health, immunity, and disease. Clin Pharmacol Ther. 2017;102(1):62-69.
DOI: 10.1002/cpt.698
-
73.
Darlenski R., Hristakieva E., Aydin U., Gancheva D., Gancheva T., Zheleva A., et al. Epidermal barrier and oxidative stress parameters improve during in 311 nm narrow band UVB phototherapy of plaque type psoriasis. J Dermatol Sci. 2018;91(1):28-34.
DOI: 10.1016/j.jdermsci.2018.03.011
-
74.
Tian T., Wang Z., Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194.
DOI: 10.1155/2017/4535194
-
75.
Fry L., Baker B.S., Powles A.V., Engstrand L. Psoriasis is not an autoimmune disease? Exp Dermatol. 2015;24(4):241-244.
DOI: 10.1111/exd.12572
-
76.
Benhadou F., Mintoff D., Schnebert B., Thio H.B. Psoriasis and microbiota: a systematic review. Diseases. 2018;6(2):47.
DOI: 10.3390/diseases6020047
-
77.
Balci D.D., Duran N., Ozer B., Gunesacar R., Onlen Y., Yenin J.Z. High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. Eur J Dermatol. 2009;19(3):238-242.
DOI: 10.1684/ejd.2009.0663
-
78.
Chu H., Mazmanian S.K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14(7):668-675.
DOI: 10.1038/ni.2635
-
79.
Zhao H., Shang L., Zhang Y., Liang Z., Wang N., Zhang Q., et al. IL-17A inhibitors alleviate Psoriasis with concomitant restoration of intestinal/skin microbiota homeostasis and altered microbiota function. Front Immunol. 2024;15:1344963.
DOI: 10.3389/fimmu.2024.1344963
-
80.
Allhorn M., Arve S., Brüggemann H., Lood R. A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Sci Rep. 2016;6:36412.
DOI: 10.1038/srep36412
-
81.
Agak G.W., Kao S., Ouyang K., Qin M., Moon D., Butt A., et al. Phenotype and antimicrobial activity of Th17 cells induced by Propionibacterium acnes strains associated with healthy and acne skin. J Invest Dermatol. 2018;138(2):316-324.
DOI: 10.1016/j.jid.2017.07.842
-
82.
Stehlikova Z., Kostovcik M., Kostovcikova K., Kverka M., Juzlova K., Rob F., et al. Dysbiosis of skin microbiota in psoriatic patients: co-occurrence of fungal and bacterial communities. Front Microbiol. 2019;10:438.
DOI: 10.3389/fmicb.2019.00438
-
83.
Thye A.Y., Bah Y.R., Law J.W., Tan L.T., He Y.W., Wong S.H., et al. Gut-skin axis: unravelling the connection between the gut microbiome and psoriasis. Biomedicines. 2022;10(5):1037.
DOI: 10.3390/biomedicines10051037
-
84.
Nakajima S., Harrison O., Merrill E., Linehan J., Belkaid Y. Candida albicans colonization exacerbates skin inflammation in a murine model of psoriasis. J Invest Dermatol. 2017;137(5):S112.
DOI: 10.1016/j.jid.2017.02.670
-
85.
Hashiguchi Y., Yabe R., Chung S.H., Murayama M.A., Yoshida K., Matsuo K., et al. IL-36α from skin-resident cells plays an important role in the pathogenesis of imiquimodinduced psoriasiform dermatitis by forming a local autoamplification loop. J Immunol. 2018;201(1):167-182.
DOI: 10.4049/jimmunol.1701157
-
86.
Rudramurthy S.M., Honnavar P., Chakrabarti A., Dogra S., Singh P., Handa S. Association of Malassezia species with psoriatic lesions. Mycoses. 2014;57(8):483-488.
DOI: 10.1111/myc.12186
-
87.
Mazur M., Tomczak H., Lodyga M., Czajkowski R., Żaba R., Adamski Z. The microbiome of the human skin and its variability in psoriasis and atopic dermatitis. Postepy Dermatol Alergol. 2021;38(2):205-209.
DOI: 10.5114/ada.2021.106197
-
88.
Kashem S.W., Igyarto B.Z., Gerami-Nejad M., Kumamoto Y., Mohammed J.A., Jarrett E., et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015;42(2):356-366.
DOI: 10.1016/j.immuni.2015.01.008
-
89.
Meller S., Di Domizio J., Voo K.S., Friedrich H.C., Chamilos G., Ganguly D., et al. T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol. 2015;16(9):970-979.
DOI: 10.1038/ni.3211
-
90.
Masuda-Kuroki K., Murakami M., Tokunaga N., Kishibe M., Mori H., Utsunomiya R., et al. The microbiome of the "sterile" pustules in palmoplantar pustulosis. Exp Dermatol. 2018;27(12):1372-1377.
DOI: 10.1111/exd.13791
-
91.
Drago L., De Grandi R., Altomare G., Pigatto P., Rossi O., Toscano M. Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clin Mol Allergy. 2016;14:2.
DOI: 10.1186/s12948-016-0038-z
-
92.
Seifarth F.G., Lax J.E., Harvey J., DiCorleto P.E., Husni M.E., Chandrasekharan U.M., et al. Topical heat shock protein 70 prevents imiquimod-induced psoriasis-like inflammation in mice. Cell Stress Chaperones. 2018;23(5):1129-1135.
DOI: 10.1007/s12192-018-0895-0
-
93.
Peric M., Koglin S., Dombrowski Y., Gross K., Bradac E., Büchau A., et al. Vitamin D analogs differentially control antimicrobial peptide/"alarmin" expression in psoriasis. PLoS One. 2009;4(7):e6340.
DOI: 10.1371/journal.pone.0006340
-
94.
Bosman E.S., Albert A.Y., Lui H., Dutz J.P., Vallance B.A. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome. Front Microbiol. 2019;10:2410.
DOI: 10.3389/fmicb.2019.02410
-
95.
Jiraskova Zakostelska Z., Reiss Z., Tlaskalova-Hogenova H., Rob F. Paradoxical reactions to anti-TNFα and anti-IL-17 treatment in psoriasis patients: are skin and/or gut microbiota involved? Dermatol Ther (Heidelb). 2023;13(4):911-933.
DOI: 10.1007/s13555-023-00904-4
-
96.
Tournier A., Khemis A., Maccari F., Reguiai Z., Bégon E., Fougerousse A.C., et al. Methotrexate efficacy and tolerance in plaque psoriasis. A prospective real-life multicentre study in France. Ann Dermatol Venereol. 2019;146(2):106-114.
DOI: 10.1016/j.annder.2018.11.011
-
97.
van Huizen A.M., Sikkel R., Caron A.G.M., Menting S.P., Spuls P.I. Methotrexate dosing regimen for plaquetype psoriasis: an update of a systematic review. J Dermatolog Treat. 2022;33(8):3104-3118.
DOI: 10.1080/09546634.2022.2117539
-
98.
Letertre M.P.M., Munjoma N., Wolfer K., Pechlivanis A., McDonald J.A.K., Hardwick R.N., et al. A twoway interaction between methotrexate and the gut microbiota of male Sprague Dawley rats. J Proteome Res. 2020;19(8):3326-3339.
DOI: 10.1021/acs.jproteome.0c00230
-
99.
Dai C., Jiang M., Sun M.J. Letter: increased risk of developing Crohn's disease or ulcerative colitis in 17 018 patients while under treatment with anti-TNFα agents, particularly etanercept, for autoimmune diseases other than IBD. Aliment Pharmacol Ther. 2019;50(7):834-835.
DOI: 10.1111/apt.15460
-
100.
Ten Bergen L.L., Petrovic A., Krogh Aarebrot A., Appel S. The TNF/IL-23/IL-17 axis-Head-to-head trials comparing different biologics in psoriasis treatment. Scand J Immunol. 2020;92(4):e12946.
DOI: 10.1111/sji.12946
-
101.
Langan E.A., Künstner A., Miodovnik M., Zillikens D., Thaçi D., Baines J.F., et al. Combined culture and metagenomic analyses reveal significant shifts in the composition of the cutaneous microbiome in psoriasis. Br J Dermatol. 2019;181(6):1254-1264.
DOI: 10.1111/bjd.17989
-
102.
Lecron J.C., Charreau S., Jégou J.F., Salhi N., Petit-Paris I., Guignouard E., et al. IL-17 and IL-22 are pivotal cytokines to delay wound healing of S. aureus and P. aeruginosa infected skin. Front Immunol. 2022;13:984016.
DOI: 10.3389/fimmu.2022.984016
-
103.
O'Neill C.A., Monteleone G., McLaughlin J.T., Paus R. The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays. 2016;38(11):1167-1176.
DOI: 10.1002/bies.201600008
-
104.
Mahmud M.R., Akter S., Tamanna S.K., Mazumder L., Esti I.Z., Banerjee S., et al. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes. 2022;14(1):2096995.
DOI: 10.1080/19490976.2022.2096995
-
105.
Alesa D.I., Alshamrani H.M., Alzahrani Y.A., Alamssi D.N., Alzahrani N.S., Almohammadi M.E. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J Family Med Prim Care. 2019;8(11):3496-3503.
DOI: 10.4103/jfmpc.jfmpc_709_19
-
106.
Chen Y.H., Wu C.S., Chao Y.H., Lin C.C., Tsai H.Y., Li Y.R., et al. Lactobacillus pentosus GMNL-77 inhibits skin lesions in imiquimod-induced psoriasis-like mice. J Food Drug Anal. 2017;25(3):559-566.
DOI: 10.1016/j.jfda.2016.06.003
-
107.
Groeger D., O'Mahony L., Murphy E.F., Bourke J.F., Dinan T.G., Kiely B., et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013;4(4):325-339.
DOI: 10.4161/gmic.25487
-
108.
Polkowska-Pruszyńska B., Gerkowicz A., Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases – an update. J Eur Acad Dermatol Venereol. 2020;34(3):455-464.
DOI: 10.1111/jdv.15951
-
109.
Navarro-López V., Martínez-Andrés A., RamírezBoscá A., Ruzafa-Costas B., Núñez-Delegido E., Carrión-Gutiérrez M.A., et al. Efficacy and safety of oral administration of a mixture of probiotic strains in patients with psoriasis: a randomized controlled clinical trial. Acta Derm Venereol. 2019;99(12):1078-1084.
DOI: 10.2340/00015555-3305
-
110.
Borodzicz S., Rudnicka L., Mirowska-Guzel D., CudnochJedrzejewska A. The role of epidermal sphingolipids in dermatologic diseases. Lipids Health Dis. 2016;15:13.
DOI: 10.1186/s12944-016-0178-7
-
111.
Putaala H., Ouwehand A., Tiihonen K., Rautonen N. Probiotic bacteria for the topical treatment of skin disorders. Patent for invention WO2012150269A1. Available at: https://patents.google.com/patent/WO2012150269A1/en. Accessed November 08, 2012.
-
112.
Rigon R.B., de Freitas A.C.P., Bicas J.L., Cogo-Müller K., Kurebayashi A.K., Magalhães R.F., et al. Skin microbiota as a therapeutic target for psoriasis treatment: trends and perspectives. J Cosmet Dermatol. 2021;20(4):1066-1072.
DOI: 10.1111/jocd.13752
-
113.
Yang Y., Qu L., Mijakovic I., Wei Y. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact. 2022;21(1):176.
DOI: 10.1186/s12934-022-01901-6