Abstract
The rapid expansion of antibiotic-resistant pathogenic bacteria is perceived as a global threat to humanity, which causes significant damage to human health and leads to huge economic losses. Antibiotic resistance is a multifaceted phenomenon, one of which manifests in the form of bacterial fitness. Bacterial fitness refers to the capacity of bacteria to optimize their metabolism in order to prioritize functions that enhance their ability to reproduce, especially in specific environmental conditions. The objective of this review is to present a comprehensive analysis, based on extensive observations, of the reciprocal influence between two important characteristics of bacteria: antibiotic resistance and virulence. The review describes the main methodological approaches used to assess bacterial fitness. The analysis of various forms of multidirectional fitness effects in antibiotic-resistant bacteria is conducted, and an exploration of the fundamental principles underlying their genetic foundation is presented. Suggestions are made for the practical application of assessing the fitness abilities of bacterial pathogens.
Pirogov Russian National Research Medical University, Moscow, Russia
Central Research Institute of Epidemiology, Moscow, Russia
-
1.
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655.
DOI: 10.1016/S0140-6736(21)02724-0
-
2.
Ahmad M., Khan A.U. Global economic impact of antibiotic resistance: A review. J Glob Antimicrob Resist. 2019;19:313-316.
DOI: 10.1016/j.jgar.2019.05.024
-
3.
Novick A., Szilard L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A. 1950;36(12):708-719.
DOI: 10.1073/pnas.36.12.708
-
4.
Botelho J., Grosso F., Peixe L. Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat. 2019;44:100640.
DOI: 10.1016/j.drup.2019.07.002
-
5.
Fitness or Bacterial fitness. Available at: https://revive.gardp.org/resource/fitness-or-bacterialfitness/?cf=encyclopaedia. Accessed December 10, 2023.
-
6.
Boral J., Pınarlık F., Ekinci G., Can F., Ergönül Ö. Does emerging carbapenem resistance in Acinetobacter baumannii increase the case fatality rate? Systematic review and meta-analysis. Infect Dis Rep. 2023;15(5):564-575.
DOI: 10.3390/idr15050055
-
7.
Pavlova A.S., Kuleshov K.V., Krutova N.E., Guseva A.N., Podkolzin A.T. Characteristics of antibiotic resistance of non-typhoidal Salmonella circulating in the Russian Federation in the period from 2019 to 2022. J Microbiol Epidemiol Immunobiol. 2023;100(5):287-301.
DOI: 10.36233/0372-9311-451
-
8.
Ramadhan A.A., Hegedus E. Survivability of vancomycin resistant enterococci and fitness cost of vancomycin resistance acquisition. J Clin Pathol. 2005;58(7):744-746.
DOI: 10.1136/jcp.2004.024091
-
9.
Guo B., Abdelraouf K., Ledesma K.R., Nikolaou M., Tam V.H. Predicting bacterial fitness cost associated with drug resistance. J Antimicrob Chemother. 2012;67(4):928-932.
DOI: 10.1093/jac/dkr560
-
10.
Déziel E., Comeau Y., Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol. 2001;183(4):1195-1204.
DOI: 10.1128/JB.183.4.1195-1204.2001
-
11.
Deptuła A., Gospodarek E. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch Microbiol. 2010;192(1):79-84.
DOI: 10.1007/s00203-009-0528-1
-
12.
Bhattacharyya S., Bhattacharyya M., Pfannenstiel D., Nandi A.K., Hwang Y., Ho K., Harshey R.M. Effluxlinked accelerated evolution of antibiotic resistance at a population edge. Mol Cell. 2022;82(22):4368-4385.e6.
DOI: 10.1016/j.molcel.2022.10.024
-
13.
Wang S., Ding Q., Zhang Y., Zhang A., Wang Q., Wang R., et al. Evolution of virulence, fitness, and carbapenem resistance transmission in ST23 hypervirulent Klebsiella pneumoniae with the capsular polysaccharide synthesis gene wcaJ inserted via insertion sequence elements. Microbiol Spectr. 2022;10(6):e0240022.
DOI: 10.1128/spectrum.02400-22
-
14.
Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47-56.
DOI: 10.1016/0003-2697(87)90612-9
-
15.
Pérez-Miranda S., Cabirol N., George-Téllez R., Zamudio-Rivera L.S., Fernández F.J. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70(1):127-131.
DOI: 10.1016/j.mimet.2007.03.023
-
16.
El Fertas-Aissani R., Messai Y., Alouache S., Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris). 2013;61(5):209-216.
DOI: 10.1016/j.patbio.2012.10.004
-
17.
Dewan K.K., Skarlupka A.L., Rivera I., Cuff L.E., Gestal M.C., Taylor-Mulneix D.L., et al. Development of macrolide resistance in Bordetella bronchiseptica is associated with the loss of virulence. J Antimicrob Chemother. 2018;73(10):2797-2805.
DOI: 10.1093/jac/dky264
-
18.
Abdelraouf K., Kabbara S., Ledesma K.R., Poole K., Tam V.H. Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. J Antimicrob Chemother. 2011;66(6):1311-1317.
DOI: 10.1093/jac/dkr105
-
19.
Zhou C., Zhang H., Xu M., Liu Y., Yuan B., Lin Y., Shen F. Within-host resistance and virulence evolution of a hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 under antibiotic pressure. Infect Drug Resist. 2023;16:7255-7270.
DOI: 10.2147/IDR.S436128
-
20.
Cabot G., Zamorano L., Moyà B., Juan C., Navas A., Blázquez J., Oliver A. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother. 2016;60(3):1767-1778.
DOI: 10.1128/AAC.02676-15
-
21.
Björkman J., Nagaev I., Berg O.G., Hughes D., Andersson D.I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science. 2000;287(5457):1479-1482.
DOI: 10.1126/science.287.5457.1479
-
22.
Bertrand X., Thouverez M., Talon D. Antibiotic susceptibility and genotypic characterization of methicillinresistant Staphylococcus aureus strains in eastern France. J Hosp Infect. 2000;46(4):280-287.
DOI: 10.1053/jhin.2000.0841
-
23.
Reynolds M.G. Compensatory evolution in rifampinresistant Escherichia coli. Genetics. 2000;156(4):1471-1481.
DOI: 10.1093/genetics/156.4.1471
-
24.
Davies A.P., Billington O.J., Bannister B.A., Weir W.R., McHugh T.D., Gillespie S.H. Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J Infect. 2000;41(2):184-187.
DOI: 10.1053/jinf.2000.0711
-
25.
Simpson A.E., Skurray R.A., Firth N. An IS257-derived hybrid promoter directs transcription of a tetA(K) tetracycline resistance gene in the Staphylococcus aureus chromosomal mec region. J Bacteriol. 2000;182(12):3345-3352.
DOI: 10.1128/JB.182.12.3345-3352.2000
-
26.
Levin B.R., Perrot V., Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 2000;154(3):985-997.
DOI: 10.1093/genetics/154.3.985
-
27.
Ender M., McCallum N., Adhikari R., Berger-Bächi B. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(6):2295-2297.
DOI: 10.1128/AAC.48.6.2295-2297.2004
-
28.
Lee S.M., Ender M, Adhikari R., Smith J.M.B., BergerBächi B., Cook G.M. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob Agents Chemother. 2007;51(4):1497-1499.
DOI: 10.1128/AAC.01239-06
-
29.
Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol IJMM. 2013;303(6-7):324-330.
DOI: 10.1016/j.ijmm.2013.02.007
-
30.
Elmanakhly A.R., Bendary M.M., Safwat N.A., Awad E.A.E., Alhomrani M., Alamri A.S., et al. Carbapenem-resistant Klebsiella pneumoniae: diversity, virulence, and antimicrobial resistance. Infect Drug Resist. 2022;15:6177-6187.
DOI: 10.2147/IDR.S387742
-
31.
García-Sureda L., Doménech-Sánchez A., Barbier M., Juan C., Gascó J., Albertí S. OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55(10):4742-4747.
DOI: 10.1128/AAC.00309-11
-
32.
Element S.J., Moran R.A., Beattie E., Hall R.J., van Schaik W., Buckner M.M.C. Growth in a biofilm promotes conjugation of a blaNDM-1-bearing plasmid between Klebsiella pneumoniae strains. mSphere. 2023;8(4):e0017023.
DOI: 10.1128/msphere.00170-23
-
33.
Yang Q., Li M., Spiller O.B., Andrey D.O., Hinchliffe P., Li H., Walsh T. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun. 2017;8(1):2054.
DOI: 10.1038/s41467-017-02149-0
-
34.
Ogunlana L., Kaur D., Shaw L.P., Jangir P., Walsh T., Uphoff S., MacLean R.C. Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings. ISME J. 2023;17(11):2058-2069.
DOI: 10.1038/s41396-023-01509-7
-
35.
Choi M.J., Ko K.S. Loss of hypermucoviscosity and increased fitness cost in colistin-resistant Klebsiella pneumoniae sequence type 23 strains. Antimicrob Agents Chemother. 2015;59(11):6763-6773.
DOI: 10.1128/AAC.00952-15
-
36.
Jia X., Zhu Y., Jia P., Liu X., Yu W., Li X., et al. Emergence of a superplasmid coharboring hypervirulence and multidrug resistance genes in Klebsiella pneumoniae poses new challenges to public health. Microbiol Spectr. 2022;10(6):e0263422.
DOI: 10.1128/spectrum.02634-22
-
37.
Shaidullina E.R., Schwabe M., Rohde T., Shapovalova V.V., Dyachkova M.S., Matsvay A.D., et al. Genomic analysis of the international high-risk clonal lineage Klebsiella pneumoniae sequence type 395. Genome Med. 2023;15(1):9.
DOI: 10.1186/s13073-023-01159-6
-
38.
Emane A.K.A., Guo X., Takiff H.E., Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberc Edinb Scotl. 2021;129:102091.
DOI: 10.1016/j.tube.2021.102091
-
39.
Vincent L.R., Kerr S.R., Tan Y., Tomberg J., Raterman E.L., Hotopp J.C.D., et al. In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio. 2018;9(2):e01905-17.
DOI: 10.1128/mBio.01905-17
-
40.
Alcalá-Franco B., Montanari S., Cigana C., Bertoni G., Oliver A., Bragonzi A. Antibiotic pressure compensates the biological cost associated with Pseudomonas aeruginosa hypermutable phenotypes in vitro and in a murine model of chronic airways infection. J Antimicrob Chemother. 2012;67(4):962-969.
DOI: 10.1093/jac/dkr587
-
41.
Perron G.G., Hall A.R., Buckling A. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Am Nat. 2010;176(3):303-311.
DOI: 10.1086/655217
-
42.
Maciá M.D., Blanquer D., Togores B., Sauleda J., Pérez J.L., Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382-3386.
DOI: 10.1128/AAC.49.8.3382-3386.2005
-
43.
Vanacker M., Lenuzza N., Rasigade J.P. The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Front Microbiol. 2023;14:1186920.
DOI: 10.3389/fmicb.2023.1186920
-
44.
Shin S.H., Lim Y., Lee S.E., Yang N.W., Rhee J.H. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Methods. 2001;44(1):89-95.
DOI: 10.1016/s0167-7012(00)00229-3
-
45.
Uyanik T., Gücükoğlu A., Gürler H., Kanat S., Bölükbaş A., Çadirci Ö. Clonal spread of non-O157 Shiga toxigenic Escherichia coli O21:H25 in raw water buffalo milks. J Appl Microbiol. 2023;134(11):lxad277.
DOI: 10.1093/jambio/lxad277