Abstract
The species Treponema pallidum includes 4 subspecies. According to the bioinformatic analysis, the syphilis pathogen T. pallidum subsp. pallidum was probably separated from the causative agents of yaws, bejel, and pinta more than 800 years ago. Its entry into Europe with its subsequent epidemic at the end of the 15th century remains a matter of debate. The rapid spread in the European countries and the increase in the incidence of the disease were most likely due to the significant genomic rearrangements, which increased the infectivity and virulence of the microorganism, as well as the sociocultural factors of that era. Currently, T. pallidum subsp. pallidum divides into 2 phylogenetic lines – SS14 and Nichols. The SS14 line is widespread and dominant in almost all countries; however, it is significantly inferior to the Nichols line in genetic diversity. Despite these facts, Nichols strains continue to be used in scientific laboratories as reference strains, which is obviously a disadvantage in research planning. While penicillin sensitivity remains, there is a significant spread of resistance of syphilis pathogen to macrolides, especially among SS14 isolates. Further studies of genetic variability as well as the structure of T. pallidum subsp. pallidum outer membrane proteins can bring modern medicine closer to the creating a vaccine against syphilis.
State Scientific Center of Dermatology, Venerology and Cosmetology, Moscow, Russia
State Scientific Center of Dermatology, Venerology and Cosmetology, Moscow, Russia
State Scientific Center of Dermatology, Venerology and Cosmetology, Moscow, Russia
State Scientific Center of Dermatology, Venerology and Cosmetology, Moscow, Russia
State Scientific Center of Dermatology, Venerology and Cosmetology, Moscow, Russia
-
1.
Gogarten J.F., Düx A., Schuenemann V.J., Nowak K., Boesch C., Wittig R.M., et al. Tools for opening new chapters in the book of Treponema pallidum evolutionary history. Clin Microbiol Infect. 2016;22(11): 916-921.
DOI: 10.1016/j.cmi.2016.07.027
-
2.
Beale M.A., Marks M., Sahi S.K., Tantalo L.C., Nori A.V., French P., et al. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun. 2019; 10(1):3255.
DOI: 10.1038/s41467-019-11216-7
-
3.
Arora N., Schuenemann V.J., Jäger G., Peltzer A., Seitz A., Herbig A., et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2:16245.
DOI: 10.1038/nmicrobiol.2016.245
-
4.
Knauf S., Batamuzi E.K., Mlengeya T., Kilewo M., Lejora I.A., Nordhoff M., et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2012;49(2):292-303.
DOI: 10.1177/0300985811402839
-
5.
Knauf S., Liu H., Harper K.N. Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerg Infect Dis. 2013;19(12):2058-2060.
DOI: 10.3201/eid1912.130863
-
6.
Sun J., Meng Z., Wu K., Liu B., Zhang S., Liu Y., et al. Tracing the origin of Treponema pallidum in China using nextgeneration sequencing. Oncotarget. 2016;7(28):4290442918.
DOI: 10.18632/oncotarget.10154
-
7.
Thurlow C.M., Joseph S.J., Ganova-Raeva L., Katz S.S., Pereira L., Chen C., et al. Selective whole-genome amplification as a tool to enrich specimens with low Treponema pallidum genomic DNA copies for wholegenome sequencing. mSphere. 2022;7(3):e0000922.
DOI: 10.1128/msphere.00009-22
-
8.
Lieberman N.A.P., Lin M.J., Xie H., Shrestha L., Nguyen T., Huang M.L., et al. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis. 2021; 15(12):e0010063.
DOI: 10.1371/journal.pntd.0010063
-
9.
Luger A. The origin of syphilis. Clinical and epidemiologic considerations on the Columbian theory. Sex Transm Dis. 1993;20(2):110-117. PMID: 8503058.
-
10.
Hudson E.H. Treponematosis and man's social evolution. Am Anthropol. 1965;67:885e901.
DOI: 10.1525/aa.1965.67.4.02a00020
-
11.
Bagirova A.A., Lomonosov K.M. Syphilis: from origins to the present day. Infekcionnye bolezni. 2019;17(1):100104. Russian.
DOI: 10.20953/17299225-2019-1-100-104
-
12.
Cockburn T.A. The origin of the treponematoses. Bull World Health Organ. 1961;24(2):221-228. PMID: 13694226.
-
13.
Milich M.V. Evolution of syphilis. M.: Medicina; 1987; p. 26-43. Russian.
-
14.
Hudson E.H. Treponematosis in perspective. Bull World Health Organ. 1965;32:735-748. PMID: 5318224.
-
15.
Fraser C., Norris S., Weinstock G., White O., Sutton G., Dodson R., et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998;281:375388.
DOI: 10.1126/science.281.5375.375
-
16.
Harper K.N., Ocampo P.S., Steiner B.M., George R.W., Silverman M.S., Bolotin S., et al. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2008;2(1):e148.
DOI: 10.1371/journal.pntd.0000148
-
17.
Gray R.R., Mulligan C.J., Molini B.J., Sun E.S., Giacani L., Godornes C., et al. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol. 2006;23(11):2220-2233.
DOI: 10.1093/molbev/msl092
-
18.
Pla-Díaz M., Sánchez-Busó L., Giacani L., Šmajs D., Bosshard P.P., Bagheri H.C., et al. Evolutionary processes in the emergence and recent spread of the syphilis agent, Treponema pallidum. Mol Biol Evol. 2022;39(1):msab318.
DOI: 10.1093/molbev/msab318
-
19.
Majander K., Pfrengle S., Kocher A., Neukamm J., du Plessis L., Pla-Díaz M., et al. Ancient bacterial genomes reveal a high diversity of Treponema pallidum strains in early modern Europe. Curr Biol. 2020;30(19):37883803.e10.
DOI: 10.1016/j.cub.2020.07.058
-
20.
Hadfield J., Harris S.R., Seth-Smith H.M.B., Parmar S., Andersson P., Giffard P.M., et al. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res. 2017;27(7):12201229.
DOI: 10.1101/gr.212647.116
-
21.
Roetzer A., Diel R., Kohl T. A., Rückert C., Nübel U., Blom J., et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387.
DOI: 10.1371/journal.pmed.1001387
-
22.
Beale M.A., Marks M., Cole M.J., Lee M-K., Pitt R., Ruis C., et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol. 2021;6:1549-1560.
DOI: 10.1038/s41564-021-01000-z
-
23.
Nishiki S., Lee K., Kanai M., Nakayama S.I., Ohnishi M. Phylogenetic and genetic characterization of Treponema pallidum strains from syphilis patients in Japan by wholegenome sequence analysis from global perspectives. Sci Rep. 2021;11(1):3154.
DOI: 10.1038/s41598-02182337-7
-
24.
Šmajs D., Strouhal M., Knauf S. Genetics of human and animal uncultivable treponemal pathogens. InfectGenet Evol. 2018;61:92-107.
DOI: 10.1016/j.meegid.2018.03.015
-
25.
Grillová, L., Oppelt J., Mikalová L., Nováková M., Giacani L., Niesnerová A., et al. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front Microbiol. 2019;10:1691.
DOI: 10.3389/fmicb.2019.01691
-
26.
Strouhal M., Smajs D., Matejková P., Sodergren E., Amin A.G., Howell J.K., et al. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007;75(12):5859-5866.
DOI: 10.1128/IAI.00709-07
-
27.
Pětrošová H., Pospíšilová P., Strouhal M., Čejková D., Zobaníková M., Mikalová L., et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increasedseparation of syphilis treponeme subclusters. PLoS One. 2013;8(9):e74319.
DOI: 10.1371/journal.pone.0074319
-
28.
Cha J.Y., Ishiwata A., Mobashery S. A novel β-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem. 2004;279(15):14917-14921.
DOI: 10.1074/jbc.M400666200
-
29.
Stamm L.V., Bergen, H.L. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycinresistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother. 2000;44(3):806-807.
DOI: 10.1128/AAC.44.3.806807.2000
-
30.
Matějková P., Flasarová M., Zákoucká H., Bořek M., Křemenová S., Arenberger P., et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol. 2009;58(Pt. 6):832836.
DOI: 10.1099/jmm.0.007542-0
-
31.
Molini B.J., Tantalo L.C., Sahi S.K., Rodriguez V.I., Brandt S.L., Fernandez M.C., et al. Macrolide resistance in Treponema pallidum correlates with 23S rDNA mutations in recently isolated clinical strains. Sex Transm Dis. 2016;43(9):579-583.
DOI: 10.1097/OLQ.0000000000000486
-
32.
Martin I.E., Tsang R.S.W., Sutherland K., Anderson B., Read R., Roy C., et al. Molecular typing of Treponema pallidum strains in western Canada: predominance of 14d subtypes. Sex Transm Dis. 2010;37:544-548.
DOI: 10.1097/OLQ.0b013e3181d73ce1
-
33.
Muller E.E., Paz-Bailey G., Lewis D.A. Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa. Sex Transm Infect. 2012;88:470-474.
DOI: 10.1136/sextrans-2011-050322
-
34.
Van Damme K., Behets F., Ravelomanana N., Godornes C., Khan M., Randrianasolo B., et al. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. Sex Transm Dis. 2009;36:775-776.
DOI: 10.1097/OLQ.0b013e3181bd11dd
-
35.
lasarová M., Pospíšilová P., Mikalová L., Vališová Z., Dastychová E., Strnadel R., et al. Sequencing based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypesare related to the sequence of the SS14 strain. Acta Derm Venereol. 2012;92:669-674.
DOI: 10.2340/00015555-1335
-
36.
Tipple C., McClure M.O., Taylor G.P. High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex Transm Infect. 2011;87:486-488.
DOI: 10.1136/sextrans-2011-050082
-
37.
Grimes M., Sahi S.K., Godornes B.C., Tantalo L.C., Roberts N., Bostick D., et al. Two mutations associated with macrolide resistance in Treponema pallidum: increasing prevalence and correlation with molecular strain type in Seattle, Washington. Sex Transm Dis. 2012;39:954-958.
DOI: 10.1097/OLQ. 0b013e31826ae7a8
-
38.
Noda A.A., Matos N., Blanco O., Rodrı´guez I., Stamm L.V. First report of the 23S rRNA gene A2058G point mutation associated with macrolide resistance in Treponema pallidum from syphilis patients in Cuba. Sex Transm Dis. 2016;43:332-334.
DOI: 10.1097/OLQ.0000000000000440
-
39.
Lukehart S.A., Godornes C., Molini B.J., Sonnett P., Hopkins S., Mulcahy F., et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med. 2004;351:154-158.
DOI: 10.1056/NEJMoa040216
-
40.
Chen X.S., Yin Y.P., Wei W.H., Wang H.C., Peng R.R., Zheng H.P., et al. High prevalence of azithromycin resistance to Treponema pallidum in geographically different areas in China. Clin Microbiol Infect. 2013;19(10):975-979.
DOI: 10.1111/1469-0691.12098