Abstract
P. aeruginosa is not only intrinsically resistant to many groups of antimicrobials, but is also extremely capable in acquiring resistance to almost all antibacterial agents that are used for the therapy of infections caused by this pathogen, making the choice of treatment regimens very complicated. In this article we review the guidelines by the Spanish Society of Chemotherapy on antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa that were recently published in the Revista Española de Quimioterapia journal.
Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
Pirogov Russian National Research Medical University, Moscow, Russia
St. Alexiy Central Clinical Hospital, Moscow, Russia
Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
-
1.
Mensa J., Barberán J., Soriano A., et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. Rev Esp Quimioter 2018;31(1): 78-100.
-
2.
Kuzmenkov A.Yu, Trushin I.V, Avramenko A.A., et al. AMRmap: an online platform for monitoring antibiotic resistance. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2017;19(2):84-90. Russian.
-
3.
Cheong H.S., Kang C.I., Wi Y.M., et al. Clinical Significance and Predictors of Community-Onset Pseudomonas aeruginosa Bacteremia. Am J Med. 2008;121(8):709-71
-
4.
Kang C., Kim S., Kim H., et al. Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin Infect Dis. 2003;37(6):745-751.
-
5.
Siegman-Igra Y., Ravona R., Primerman H., Giladi M. Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int J Infect Dis. 1998;2(4):211-215.
-
6.
Suarez C., Pena C., Gavalda L., et al. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int J Infect Dis. 2010;14(Suppl 3):e73-e78.
-
7.
Pena C., Suarez C., Gozalo M., et al. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob Agents Chemother. 2012;56(3):1265-1272.
-
8.
Morata L., Cobos-Trigueros N., Martínez J.A., et al. Influence of Multidrug Resistance and Appropriate Empirical Therapy on the 30-Day Mortality Rate of Pseudomonas aeruginosa Bacteremia. Antimicrob Agents Chemother. 2012;56(9):4833-4837.
-
9.
Pena C., Cabot G., Gomez-Zorrilla S., et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis. 2015;60(4):539548.
-
10.
Thaden J.T., Park L.P., Maskarinec S.A., et al. Increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa as compared to other bacteria: Results of a 13-year prospective cohort study. Antimicrob Agents Chemother. 2017;61(6). pii: e02671-16.
-
11.
Tumbarello M., Repetto E., Trecarichi E.M., et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect. 2011;139(11):1740-1749.
-
12.
Micek S.T., Wunderink R.G., Kollef M.H., et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care. 2015;19:219.
-
13.
Tumbarello M., De Pascale G., Trecarichi E.M., et al. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med. 2013;39(4):682-692.
-
14.
Magiorakos A.P., Srinivasan A., Carey R.B., et al. Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281.
-
15.
Juan C., Zamorano L., Perez J.L., Ge Y., Oliver A. Activity of a new antipseudomonal cephalosporin, CXA-101 (FR264205), against carbapenem-resistant and multidrug-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2010;54(2):846-851.
-
16.
Sader H.S., Farrell D.J., Castanheira M., Flamm R.K., Jones R.N. Antimicrobial activity of ceftolozane/tazobactam tested against Pseudomonas aeruginosa and Enterobacteriaceae with various resistance patterns isolated in European hospitals (2011-2012). J Antimicrob Chemother. 2014;69(10):2713-2722.
-
17.
Nichols W.W., de Jonge B.L., Kazmierczak K.M., Karlowsky J.A., Sahm D.F. In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrob Agents Chemother. 2016;60(8):4743-4749.
-
18.
Huband M.D., Castanheira M., Flamm R.K., et al. In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from United States medical centers by Census region (2014). Antimicrob Agents Chemother. 2016;60(4):25372541.
-
19.
Canton R., Maiz L., Escribano A., et al. Spanish consensus on the prevention and treatment of Pseudomonas aeruginosa bronchial infections in cystic fibrosis patients. Arch Bronconeumol. 2015;51(3):140-150.
-
20.
Polverino E., Goeminne P.C., McDonnell M.J., et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J. 2017;50(3).
-
21.
Lister P.D., Wolter D.J., Hanson N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.
-
22.
Livermore D.M. Interplay of impermeability and chromosomal betalactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992;36(9):2046-2048.
-
23.
Li X.Z., Plésiat P., Nikaido H. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin Microbiol Rev. 2015;28(2):337-418.
-
24.
Hocquet D., Vogne C., El G.F., et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 2003;47(4):13711375.
-
25.
Skiada A., Markogiannakis A., Plachouras D., Daikos G.L. Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int J Antimicrob Agents. 2011;37(3):187-193.
-
26.
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:65.
-
27.
Lopez-Causape C., Rojo-Molinero E., Macia M.D., Oliver A. The problems of antibiotic resistance in cystic fibrosis and solutions. Expert Rev Respir Med. 2015;9(1):73-88.
-
28.
Zhao X., Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J Infect Dis. 2002;185(4):561-565.
-
29.
Riera E., Macia M.D., Mena A., et al. Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosa strain PAO1. J Antimicrob Chemother. 2010;65(7):1399-1404.
-
30.
Cabot G., Ocampo-Sosa A.A., Tubau F., et al. Overexpression of AmpC and Efflux Pumps in Pseudomonas aeruginosa Isolates from Bloodstream Infections: Prevalence and Impact on Resistance in a Spanish Multicenter Study. Antimicrob Agents Chemother. 2011;55(5):1906-1911.
-
31.
Cabot G., Bruchmann S., Mulet X., et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091-3099.
-
32.
Torrens G., Cabot G., Ocampo-Sosa A.A., et al. Activity of Ceftazidime-Avibactam against Clinical and Isogenic Laboratory Pseudomonas aeruginosa Isolates Expressing Combinations of Most Relevant beta-Lactam Resistance Mechanisms. Antimicrob Agents Chemother. 2016;60(10):6407-6410.
-
33.
Moya B., Zamorano L., Juan C., et al. A. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother. 2010;54(3):1213-1217.
-
34.
Riera E., Cabot G., Mulet X., et al. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011;66(9):2022-2027.
-
35.
Olaitan A.O., Morand S., Rolain J.M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.
-
36.
Skleenova E.Yu., Azizov I.S., Shek Е.А., Edelstein M.V., Kozlov R.S., Dekhnich A.V. Pseudomonas aeruginosa: the history of one of the most successful nosocomial pathogens in Russian hospitals. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2018;20:164-171. Russian.
-
37.
Oliver A., Mulet X., Lopez-Causape C., Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22:41-59.
-
38.
Del Barrio-Tofino E., Lopez-Causape C., Cabot G., et al. Genomics and Susceptibility Profiles of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa from Spain. Antimicrob Agents Chemother. 2017;61(11). pii: e01589-17.
-
39.
MacVane S.H., Kuti J.L., Nicolau D.P. Clinical Pharmacodynamics of Antipseudomonal Cephalosporins in Patients with Ventilator-Associated Pneumonia. Antimicrob Agents Chemother. 2014;58(3):1359-1364.
-
40.
McKinnon P.S., Paladino J.A., Schentag J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345-351.
-
41.
Tam V.H., McKinnon P.S., Akins R.L., Rybak M.J., Drusano G.L. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50(3):425-428.
-
42.
Bergen P.J., Bulitta J.B., Kirkpatrick C.M., et al. Effect of different renal function on antibacterial effects of piperacillin against Pseudomonas aeruginosa evaluated via the hollow-fibre infection model and mechanism-based modelling. J Antimicrob Chemother. 2016;71(9):2509-2520.
-
43.
Tam V.H., Chang K.T., Zhou J., et al. Determining beta-lactam exposure threshold to suppress resistance development in Gramnegative bacteria. J Antimicrob Chemother. 2017;72(5):1421-1428.
-
44.
Nicasio A.M., Ariano R.E., Zelenitsky S.A., et al. Population Pharmacokinetics of High-Dose, Prolonged-Infusion Cefepime in Adult Critically Ill Patients with Ventilator-Associated Pneumonia. Antimicrob Agents Chemother. 2009;53(4):1476-1481.
-
45.
Buijk S.L., Gyssens I.C., Mouton J.W., et al. Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother. 2002;49(1):121-128.
-
46.
Boselli E.M., Breilh D.P., Rimmele T.M., et al. Alveolar concentrations of piperacillin/tazobactam administered in continuous infusion to patients with ventilator-associated pneumonia. Crit Care Med. 2008;36(5):1500-1506.
-
47.
Bauer K.A., West J.E., O’Brien J.M., Goff D.A. Extended-Infusion Cefepime Reduces Mortality in Patients with Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother. 2013;57(7):2907-2912.
-
48.
Lodise T.P., Jr., Lomaestro B., Drusano G.L. Piperacillin-Tazobactam for Pseudomonas aeruginosa Infection: Clinical Implications of an Extended-Infusion Dosing Strategy. Clin Infect Dis. 2007;44(3):357363.
-
49.
Prescott W.A., Jr., Gentile A.E., Nagel J.L., Pettit R.S. Continuousinfusion antipseudomonal Beta-lactam therapy in patients with cystic fibrosis. P & T 2011;36(11):723-763.
-
50.
Roberts J.A., Kirkpatrick C.M.J., Roberts M.S., et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009;64(1):142-150.
-
51.
Felton T.W., Hope W.W., Lomaestro B.M., et al. Population Pharmacokinetics of Extended-Infusion Piperacillin-Tazobactam in Hospitalized Patients with Nosocomial Infections. Antimicrob Agents Chemother. 2012;56(8):4087-4094.
-
52.
Taccone F.S., Cotton F., Roisin S., Vincent J.L., Jacobs F. Optimal Meropenem Concentrations To Treat Multidrug-Resistant Pseudomonas aeruginosa Septic Shock. Antimicrob Agents Chemother. 2012;56(4):2129-2131.
-
53.
Robaux M.A., Dube L., Caillon J., et al. In vivo efficacy of continuous infusion versus intermittent dosing of ceftazidime alone or in combination with amikacin relative to human kinetic profiles in a Pseudomonas aeruginosa rabbit endocarditis model. J Antimicrob Chemother. 2001;47(5):617-622.
-
54.
Navas D., Caillon J., Gras-Le Guen C., et al. Comparison of in vivo intrinsic activity of cefepime and imipenem in a Pseudomonas aeruginosa rabbit endocarditis model: effect of combination with tobramycin simulating human serum pharmacokinetics. J Antimicrob Chemother. 2004;54(4):767-771.
-
55.
Alou L., Aguilar L., Sevillano D., et al. Is there a pharmacodynamic need for the use of continuous versus intermittent infusion with ceftazidime against Pseudomonas aeruginosa? An in vitro pharmacodynamic model. J Antimicrob Chemother. 2005;55(2):209-213.
-
56.
Tam V.H., Schilling A.N., Neshat S., et al. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(12):4920-4927.
-
57.
Tessier P.R., Nicolau D.P., Onyeji C.O., Nightingale C.H. Pharmacodynamics of intermittent- and continuous-infusion cefepime alone and in combination with once-daily tobramycin against Pseudomonas aeruginosa in an in vitro infection model. Chemotherapy. 1999;45(4):284-295.
-
58.
Dulhunty J.M., Roberts J.A., Davis J.S., et al. Continuous infusion of Beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis. 2013;56(2):236-244.
-
59.
Chytra I., Stepan M., Benes J., et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care. 2012;16(3):R113.
-
60.
Nicasio A.M., Eagye K.J., Nicolau D.P., et al. Pharmacodynamicbased clinical pathway for empiric antibiotic choice in patients with ventilator-associated pneumonia. J Crit Care 2010;25(1):69-77.
-
61.
Paterson D.L. Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med. 2006;119(6 Suppl 1):S62-S70.
-
62.
Lorente L., Jiménez A., Martín M.M., et al. Clinical cure of ventilatorassociated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents. 2009;33(5):464-468.
-
63.
Rafati M.R., Rouini M.R., Mojtahedzadeh M., et al. Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents. 2006;28(2):122-127.
-
64.
Yost R.J., Cappelletty D.M. The Retrospective Cohort of ExtendedInfusion Piperacillin-Tazobactam (RECEIPT) study: a multicenter study. Pharmacotherapy. 2011;31(8):767-775.
-
65.
Grant E.M., Kuti J.L., Nicolau D.P., Nightingale C., Quintiliani R. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital. Pharmacotherapy. 2002;22(4):471-483.
-
66.
Lorente L., Lorenzo L., Martin M.M., Jimenez A., Mora M.L. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother. 2006;40(2):219-223.
-
67.
Hanes S.D., Wood G.C., Herring V., et al. Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg. 2000;179(6):436-440.
-
68.
Dulhunty J.M., Roberts J.A., Davis J.S., et al. A Multicenter Randomized Trial of Continuous versus Intermittent beta-Lactam Infusion in Severe Sepsis. Am J Respir Crit Care Med. 2015;192(11):1298-1305.
-
69.
Patel G.W., Patel N., Lat A., et al. Outcomes of extended infusion piperacillin/tazobactam for documented Gram-negative infections. Diagn Microbiol Infect Dis. 2009;64(2):236-240.
-
70.
Abdul-Aziz M.H., Dulhunty J.M., Bellomo R., Lipman J., Roberts J.A. Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care. 2012;2(1):37.
-
71.
Falagas M.E., Tansarli G.S., Ikawa K., Vardakas K.Z. Clinical Outcomes With Extended or Continuous Versus Short-term Intravenous Infusion of Carbapenems and Piperacillin/Tazobactam: A Systematic Review and Meta-analysis. Clin Infect Dis. 2013;56(2):272-282.
-
72.
Roberts J.A., Abdul-Aziz M.H., Davis J.S., et al. Continuous versus Intermittent beta-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit Care Med. 2016;194(6):681-691.
-
73.
Teo J., Liew Y., Lee W., Kwa A.L. Prolonged infusion versus intermittent boluses of beta-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents. 2014;43(5):403-411.
-
74.
Tamma P.D., Putcha N., Suh Y.D., Van Arendonk K.J., Rinke M.L. Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis. 2011;11:181.
-
75.
Leisman D., Huang V., Zhou Q., et al. Delayed Second Dose Antibiotics for Patients Admitted From the Emergency Department With Sepsis: Prevalence, Risk Factors, and Outcomes. Crit Care Med 2017; 45(6):956-965.
-
76.
Moore R.D., Lietman P.S., Smith C.R. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93-99.
-
77.
Update on good use of injectable aminoglycosides, gentamycin, tobramycin, netilmycin, amikacin. Pharmacological properties, indications, dosage, and mode of administration, treatment monitoring. Med Mal Infect. 2012;42(7):301-308.
-
78.
Tam V.H., Schilling A.N., Melnick D.A., Coyle E.A. Comparison of β-lactams in counter-selecting resistance of Pseudomonas aeruginosa. Diag Microbiol Infect Dis. 2005;52(2):145-151.
-
79.
Drusano G.L., Fregeau C., Liu W., Brown D.L., Louie A. Impact of Burden on Granulocyte Clearance of Bacteria in a Mouse Thigh Infection Model. Antimicrob Agents Chemother. 2010;54(10):43684372.
-
80.
Drusano G.L., VanScoy B., Liu W., et al. Saturability of Granulocyte Kill of Pseudomonas aeruginosa in a Murine Model of Pneumonia. Antimicrob Agents Chemother. 2011;55(6):2693-2695.
-
81.
Drusano G.L., Liu W., Fikes S., et al. Interaction of drug- and granulocyte-mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. J Infect Dis. 2014;210(8):1319-1324.
-
82.
Breidenstein E.B., de lF-N., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419-426.
-
83.
Oliver A., Canton R., Campo P., Baquero F., Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000;288(5469):1251-1254.
-
84.
Hogardt M., Hoboth C., Schmoldt S., et al. Stage-Specific Adaptation of Hypermutable Pseudomonas aeruginosa Isolates during Chronic Pulmonary Infection in Patients with Cystic Fibrosis. J Infect Dis. 2007;195(1):70-80.
-
85.
Oliver A. Clinical relevance of Pseudomonas aeruginosa hypermutation in cystic fibrosis chronic respiratory infection. J Cyst Fibros. 2015;14(4):e1-e2.
-
86.
Cabot G., Zamorano L., Moyà B., et al. Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates. Antimicrob Agents Chemother. 2016;60(3):17671778.
-
87.
Waine D.J., Honeybourne D., Smith E.G., Whitehouse J.L., Dowson C.G. Association between Hypermutator Phenotype, Clinical Variables, Mucoid Phenotype, and Antimicrobial Resistance in Pseudomonas aeruginosa. J Clin Microbiol. 2008;46(10):34913493.
-
88.
Mouton J.W. Combination therapy as a tool to prevent emergence of bacterial resistance. Infection. 1999;27(Suppl 2):S24-S28.
-
89.
Rees V.E., Bulitta J.B., Oliver A., et al. Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable Pseudomonas aeruginosa. J Antimicrob Chemother. 2016;71(11):3157-3167.
-
90.
Rees V.E., Bulitta J.B., Nation R.L., et al. Shape does matter: short high-concentration exposure minimizes resistance emergence for fluoroquinolones in Pseudomonas aeruginosa. J Antimicrob Chemother. 2015;70(3):818-826.
-
91.
Garnacho-Montero J., Sa-Borges M., Sole-Violan J., et al. Optimal management therapy for Pseudomonas aeruginosa ventilatorassociated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med. 2007;35(8):1888-1895.
-
92.
Bodey G.P., Jadeja L., Elting L. Pseudomonas bacteremia. Retrospective analysis of 410 episodes. Arch Intern Med. 1985;145(9):16211629.
-
93.
Micek S.T., Lloyd A.E., Ritchie D.J., et al. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother. 2005;49(4):1306-1311.
-
94.
Yoon Y.K., Kim H.A., Ryu S.Y., et al. Tree-structured survival analysis of patients with Pseudomonas aeruginosa bacteremia: A multicenter observational cohort study. Diagn Microbiol Infect Dis. 2017;87(2):180-187.
-
95.
Al Hasan M.N., Wilson J.W., Lahr B.D., Eckel-Passow J.E., Baddour L.M. Incidence of Pseudomonas aeruginosa Bacteremia: A PopulationBased Study. Am J Med. 2008;121(8):702-708.
-
96.
Schechner V., Nobre V., Kaye K., et al. Gram-Negative Bacteremia upon Hospital Admission: When Should Pseudomonas aeruginosa Be Suspected? Clin Infect Dis. 2009;48(5):580-586.
-
97.
Vidal F., Mensa J., Almela M., et al. Bacteraemia in adults due to glucose non-fermentative Gram-negative bacilli other than P. aeruginosa. QJM. 2003;96(3):227-234.
-
98.
Paul M., Leibovici L. Editorial Commentary: Combination Therapy for Pseudomonas aeruginosa Bacteremia: Where Do We Stand? Clin Infect Dis. 2013;57(2):217-220.
-
99.
Vardakas K.Z., Tansarli G.S., Bliziotis I.A., Falagas M.E. Beta-Lactam plus aminoglycoside or fluoroquinolone combination versus betalactam monotherapy for Pseudomonas aeruginosa infections: a metaanalysis. Int J Antimicrob Agents. 2013;41(4):301-310.
-
100.
Vidal F., Mensa J., Almela M., et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med. 1996;156(18):2121-2126.
-
101.
Chatzinikolaou I., Abi-Said D., Bodey G.P., et al. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch Intern Med. 2000;160(4):501-509.
-
102.
Bliziotis I.A., Petrosillo N., Michalopoulos A., Samonis G., Falagas M.E. Impact of definitive therapy with beta-lactam monotherapy or combination with an aminoglycoside or a quinolone for Pseudomonas aeruginosa bacteremia. PLoS One. 2011;6(10):e26470.
-
103.
Pena C., Suarez C., Ocampo-Sosa A., et al. Effect of Adequate Single-Drug vs Combination Antimicrobial Therapy on Mortality in Pseudomonas aeruginosa Bloodstream infections: A Post Hoc Analysis of a Prospective Cohort. Clin Infect Dis. 2013;57(2):208-216.
-
104.
Bowers D.R., Liew Y.X., Lye D.C., et al. Outcomes of Appropriate Empiric Combination versus Monotherapy for Pseudomonas aeruginosa Bacteremia. Antimicrob Agents Chemother. 2013;57(3):1270-1274.
-
105.
Planquette B., Timsit J.F., Misset B.Y., et al. Pseudomonas aeruginosa ventilator-associated pneumonia: predictive factors of treatment failure. Am J Respir Crit Care Med. 2013;188(1):69-76.
-
106.
Cometta A., Baumgartner J.D., Lew D., et al. Prospective randomized comparison of imipenem monotherapy with imipenem plus netilmicin for treatment of severe infections in nonneutropenic patients. Antimicrob Agents Chemother. 1994;38(6):1309-1313.
-
107.
Hu Y., Li L., Li W., et al. Combination antibiotic therapy versus monotherapy for Pseudomonas aeruginosa bacteraemia: A metaanalysis of retrospective and prospective studies. Int J Antimicrob Agents. 2013;42(6):492-496.
-
108.
Park S.Y., Park H.J., Moon S.M., et al. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect Dis. 2012;12:308.
-
109.
Kim Y.J., Jun Y.H., Kim Y.R., et al. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis. 2014;14:161.
-
110.
Hilf M., Yu V.L., Sharp J., et al. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med. 1989;87(5):540-546.
-
111.
Leibovici L., Paul M., Poznanski O., et al. Monotherapy versus betalactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother. 1997;41(5):1127-1133.
-
112.
Smith A.L., Doershuk C., Goldmann D., et al. Comparison of a betalactam alone versus beta-lactam and an aminoglycoside for pulmonary exacerbation in cystic fibrosis. J Pediatr. 1999;134(4):413-421.
-
113.
Safdar N., Handelsman J., Maki D.G. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A metaanalysis. Lancet Infect Dis. 2004;4(8):519-527.
-
114.
Vidal L., Gafter-Gvili A., Borok S., et al. Efficacy and safety of aminoglycoside monotherapy: systematic review and metaanalysis of randomized controlled trials. J Antimicrob Chemother. 2007;60(2):247-257.
-
115.
Bulitta J.B., Ly N.S., Landersdorfer C.B., et al. Two mechanisms of killing of Pseudomonas aeruginosa by tobramycin assessed at multiple inocula via mechanism-based modeling. Antimicrob Agents Chemother. 2015;59(4):2315-2327.
-
116.
Fernández L., Hancock R.E.W. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clin Microbiol Rev. 2012;25(4):661-681.
-
117.
Fernandez L., Breidenstein E.B., Hancock R.E. Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updat. 2011;14(1):121.
-
118.
Kashuba A.D., Nafziger A.N., Drusano G.L., Bertino J.S., Jr. Optimizing Aminoglycoside Therapy for Nosocomial Pneumonia Caused by Gram-Negative Bacteria. Antimicrob Agents Chemother. 1999;43(3):623-629.
-
119.
Zelenitsky S.A., Harding G.K., Sun S., Ubhi K., Ariano R.E. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52(4):668-674.
-
120.
Triginer C., Izquierdo I., Fernandez R., et al. Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med. 1990;16(5):303-306.
-
121.
Triginer C., Izquierdo I., Fernandez R., et al. Changes in gentamicin pharmacokinetic profiles induced by mechanical ventilation. Eur J Clin Pharmacol. 1991;40(3):297-302.
-
122.
Nicolau D.P., Freeman C.D., Belliveau P.P., et al. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39(3):650-655.
-
123.
Udy A.A., Varghese J.M., Altukroni M., et al. Sub-therapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142(1):30-39.
-
124.
Udy A.A., Roberts J.A., Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol. 2011;7(9):539543.
-
125.
Taccone F.S., Laterre P.F., Dugernier T., et al. Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14(4):R126.
-
126.
Roberts J.A., Ulldemolins M., Roberts M.S., et al. Therapeutic drug monitoring of [beta]-lactams in critically ill patients: proof of concept. Int J Antimicrobial Agents. 2010;36(4):332-339.
-
127.
Roger C., Nucci B., Molinari N., et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents. 2015;46(1):21-27.
-
128.
Taccone F.S., Laterre P.F., Spapen H., et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14(2):R53.
-
129.
Blackburn L.M., Tverdek F.P., Hernandez M., Bruno J.J. First-dose pharmacokinetics of aminoglycosides in critically ill haematological malignancy patients. Int J Antimicrob Agents. 2015;45(1):46-53.
-
130.
Zeitany R.G., El Saghir N.S., Santhosh-Kumar C.R., Sigmon MA. Increased aminoglycoside dosage requirements in hematologic malignancy. Antimicrob Agents Chemother. 1990;34(5):702-708.
-
131.
de Montmollin E., Bouadma L., Gault N., et al. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med. 2014;40(7):998-1005.
-
132.
Hodiamont C.J., Juffermans N.P., Bouman C.S., et al. Determinants of gentamicin concentrations in critically ill patients: a population pharmacokinetic analysis. Int J Antimicrob Agents. 2017;49(2):204211.
-
133.
Bracco D., Landry C., Dubois M.J., Eggimann P. Pharmacokinetic variability of extended interval tobramycin in burn patients. Burns. 2008;34(6):791-796.
-
134.
Robert J., Pean Y., Alfandari S., et al. Application of guidelines for aminoglycosides use in French hospitals in 2013-2014. Eur J Clin Microbiol Infect Dis. 2017;36:1083-1090.
-
135.
Drusano G.L., Ambrose P.G., Bhavnani S.M., et al. Back to the Future: Using Aminoglycosides Again and How to Dose Them Optimally. Clin Infect Dis. 2007;45(6):753-760.
-
136.
Mombelli G., Coppens L., Thys J.P., Klastersky J. Anti-Pseudomonas activity in bronchial secretions of patients receiving amikacin or tobramycin as a continuous infusion. Antimicrob Agents Chemother. 1981;19(1):72-75.
-
137.
Rodvold K.A., George J.M., Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011;50(10):637-664.
-
138.
Boselli E., Breilh D., Djabarouti S., et al. Reliability of minibronchoalveolar lavage for the measurement of epithelial lining fluid concentrations of tobramycin in critically ill patients. Intensive Care Med. 2007;33(9):1519-1523.
-
139.
Carcas A.J., Garcia-Satue J.L., Zapater P., Frias-Iniesta J. Tobramycin penetration into epithelial lining fluid of patients with pneumonia. Clin Pharmacol Ther. 1999;65(3):245-250.
-
140.
Panidis D., Markantonis S.L., Boutzouka E., Karatzas S., Baltopoulos G. Penetration of gentamicin into the alveolar lining fluid of critically ill patients with ventilator-associated pneumonia. Chest. 2005;128(2):545-552.
-
141.
Sulaiman H., Abdul-Aziz M.H., Roberts J.A. Pharmacokinetic/ Pharmacodynamics-Optimized Antimicrobial Therapy in Patients with Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia. Semin Respir Crit Care Med. 2017;38(3):271-286.
-
142.
van ‘t Veen A., Mouton J.W., Gommers D., et al. Influence of pulmonary surfactant on in vitro bactericidal activities of amoxicillin, ceftazidime, and tobramycin. Antimicrob Agents Chemother. 1995;39(2):329-333.
-
143.
Konig C., Simmen H.P., Blaser J. Effect of pathological changes of pH, pO2 and pCO2 on the activity of antimicrobial agents in vitro. Eur J Clin Microbiol Infect Dis. 1993;12(7):519-526.
-
144.
Mendelman P.M., Smith A.L., Levy J., et al. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis. 1985;132(4):761-765.
-
145.
Levy J., Smith A.L., Kenny M.A., Ramsey B., Schoenknecht F.D. Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum. J Infect Dis. 1983;148(6):1069-1076.
-
146.
de Oliveira M.S., de Assis D.B., Freire M.P., et al. Treatment of KPCproducing Enterobacteriaceae: suboptimal efficacy of polymyxins. Clin Microbiol Infect. 2015;21(2):179.e1-7.
-
147.
Kvitko C.H., Rigatto M.H., Moro A.L., Zavascki A.P. Polymyxin B versus other antimicrobials for the treatment of Pseudomonas aeruginosa bacteraemia. J Antimicrob Chemother. 2011;66(1):175-179.
-
148.
Paul M., Bishara J., Levcovich A., et al. Effectiveness and safety of colistin: prospective comparative cohort study. J Antimicrob Chemother. 2010;65(5):1019-1027.
-
149.
Fink M.P., Snydman D.R., Niederman M.S., et al. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. The Severe Pneumonia Study Group. Antimicrob Agents Chemother. 1994;38(3):547-557.
-
150.
Giamarellou H., Bassaris H.P., Petrikkos G., et al. Monotherapy with intravenous followed by oral high-dose ciprofloxacin versus combination therapy with ceftazidime plus amikacin as initial empiric therapy for granulocytopenic patients with fever. Antimicrob Agents Chemother. 2000;44(12):3264-3271.
-
151.
Torres A., Bauer T.T., Leon-Gil C., et al. Treatment of severe nosocomial pneumonia: a prospective randomised comparison of intravenous ciprofloxacin with imipenem/cilastatin. Thorax. 2000;55(12):10331039.
-
152.
Mogayzel P.J., Jr., Naureckas E.T., Robinson K.A., et al. Cystic Fibrosis Foundation pulmonary guideline. pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann Am Thorac Soc. 2014;11(10):1640-1650.
-
153.
Arnold H.M., Sawyer A.M., Kollef M.H. Use of adjunctive aerosolized antimicrobial therapy in the treatment of Pseudomonas aeruginosa and Acinetobacter baumannii ventilator-associated pneumonia. Respir Care. 2012;57(8):1226-1233.
-
154.
Rattanaumpawan P., Lorsutthitham J., Ungprasert P., Angkasekwinai N., Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother. 2010;65(12):2645-2649.
-
155.
Doshi N.M., Cook C.H., Mount K.L., et al. Adjunctive aerosolized colistin for multi-drug resistant gram-negative pneumonia in the critically ill: a retrospective study. BMC Anesthesiol. 2013;13(1):45.
-
156.
Hallal A., Cohn S.M., Namias N., et al. Aerosolized tobramycin in the treatment of ventilator-associated pneumonia: a pilot study. Surg Infect (Larchmt). 2007;8(1):73-82.
-
157.
Ghannam D.E., Rodriguez G.H., Raad I.I., Safdar A. Inhaled aminoglycosides in cancer patients with ventilator-associated Gram-negative bacterial pneumonia: safety and feasibility in the era of escalating drug resistance. Eur J Clin Microbiol Infect Dis. 2009;28(3):253-259.
-
158.
Tumbarello M.M., De Pascale G.M.P., Trecarichi E.M.M., et al. Effect of Aerosolized Colistin as Adjunctive Treatment on the Outcomes of Microbiologically Documented Ventilator-Associated Pneumonia Caused by Colistin-Only Susceptible Gram-Negative Bacteria. Chest. 2013;144(6):1768-1775.
-
159.
Kofteridis D., Alexopoulou C., Valachis A., et al. Aerosolized plus Intravenous Colistin versus Intravenous Colistin Alone for the Treatment of Ventilator-Associated Pneumonia: A Matched Case-Control Study. Clin Infect Dis. 2010;51(11):1238-1244.
-
160.
Horianopoulou M., Kanellopoulou M., Paraskevopoulos I., et al. Use of inhaled ampicillin-sulbactam against multiresistant Acinetobacter baumannii in bronchial secretions of intensive care unit patients. Clin Microbiol Infect. 2004;10(1):85-86.
-
161.
Naesens R., Vlieghe E., Verbrugghe W., Jorens P., Ieven M. A retrospective observational study on the efficacy of colistin by inhalation as compared to parenteral administration for the treatment of nosocomial pneumonia associated with multidrug-resistant Pseudomonas aeruginosa. BMC Infect Dis. 2011;11:317.
-
162.
Korbila I.P., Michalopoulos A., Rafailidis P.I., et al. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin Microbiol Infect. 2010;16(8):12301236.
-
163.
Abdellatif S., Trifi A., Daly F., et al. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann Intensive Care. 2016;6(1):26.
-
164.
Brown R.B., Kruse J.A., Counts G.W., et al. Double-blind study of endotracheal tobramycin in the treatment of gram-negative bacterial pneumonia. The Endotracheal Tobramycin Study Group. Antimicrob Agents Chemother. 1990;34(2):269-272.
-
165.
Ioannidou E., Siempos I.I., Falagas M.E. Administration of antimicrobials via the respiratory tract for the treatment of patients with nosocomial pneumonia: a meta-analysis. J Antimicrob Chemother. 2007;60(6):1216-1226.
-
166.
Valachis A., Samonis G., Kofteridis D.P. The Role of Aerosolized Colistin in the Treatment of Ventilator-Associated Pneumonia: A Systematic Review and Metaanalysis. Crit Care Med. 2015;43(3):527-533.
-
167.
Sole-Lleonart C., Rouby J.J., Blot S., et al. Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated Adults: A Systematic Review and Meta-analysis. Anesthesiology. 2017;126(5):890-908.
-
168.
Brodt A.M., Stovold E., Zhang L. Inhaled antibiotics for stable non- cystic fibrosis bronchiectasis: a systematic review. Eur Respir J. 2014;44(2):382-393.
-
169.
Lu Q., Yang J., Liu Z., et al. Nebulized Ceftazidime and Amikacin in Ventilator-associated Pneumonia caused by Pseudomonas aeruginosa. Am J Respir Crit Care Med. 2011;184(1):106-115.
-
170.
Goncalves-Pereira J., Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care. 2011;15(5):R206.
-
171.
Feng Y., Hodiamont C.J., van Hest R.M., et al. Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. PLoS One. 2016;11(2):e0149310.
-
172.
Dahdouh E., Shoucair S.H., Salem S.E., Daoud Z. Mutant prevention concentrations of imipenem and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Scientific World Journal. 2014;2014:979648.
-
173.
Credito K., Kosowska-Shick K., Appelbaum P.C. Mutant prevention concentrations of four carbapenems against gram-negative rods. Antimicrob Agents Chemother. 2010;54(6):2692-2695.
-
174.
Henrichfreise B., Wiegand I., Luhmer-Becker I., Wiedemann B. Development of Resistance in Wild-Type and Hypermutable Pseudomonas aeruginosa Strains Exposed to Clinical Pharmacokinetic Profiles of Meropenem and Ceftazidime Simulated In Vitro. Antimicrob Agents Chemother. 2007;51(10):3642-3649.
-
175.
Grill M.F., Maganti R.K. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72(3):381-393.
-
176.
Chow K.M., Hui A.C., Szeto C.C. Neurotoxicity induced by betalactam antibiotics: from bench to bedside. Eur J Clin Microbiol Infect Dis. 2005;24(10):649-653.
-
177.
Moriyama B., Henning S.A., Childs R., et al. High-dose continuous infusion beta-lactam antibiotics for the treatment of resistant Pseudomonas aeruginosa infections in immunocompromised patients. Ann Pharmacother. 2010;44(5):929-935.
-
178.
Moriyama B., Henning S.A., Neuhauser M.M., Danner R.L., Walsh T.J. Continuous-infusion beta-lactam antibiotics during continuous venovenous hemofiltration for the treatment of resistant gram-negative bacteria. Ann Pharmacother. 2009;43(7):1324-1337.
-
179.
Jensen J.U., Hein L., Lundgren B., et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients: secondary end point results from a 1200 patient randomised trial. BMJ Open. 2012;2(2):e000635.
-
180.
Mustafa M.H., Chalhoub H., Denis O., et al. Antimicrobial Susceptibility of Pseudomonas aeruginosa Isolated from Cystic Fibrosis Patients in Northern Europe. Antimicrob Agents Chemother. 2016;60(11):6735-6741.
-
181.
Sader H.S., Rhomberg P.R., Jones R.N. In vitro activity of beta-lactam antimicrobial agents in combination with aztreonam tested against metallo-beta-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii. J Chemother. 2005;17(6):622-627.
-
182.
Bosso J.A., Saxon B.A., Matsen J.M. In vitro activities of combinations of aztreonam, ciprofloxacin, and ceftazidime against clinical isolates of Pseudomonas aeruginosa and Pseudomonas cepacia from patients with cystic fibrosis. Antimicrob Agents Chemother. 1990;34(3):487488.
-
183.
Sader H.S., Huynh H.K., Jones R.N. Contemporary in vitro synergy rates for aztreonam combined with newer fluoroquinolones and betalactams tested against gram-negative bacilli. Diagn Microbiol Infect Dis. 2003;47(3):547-550.
-
184.
Sader H.S., Jones R.N. Comprehensive in vitro evaluation of cefepime combined with aztreonam or ampicillin/sulbactam against multidrug resistant Pseudomonas aeruginosa and Acinetobacter spp. Int J Antimicrob Agents. 2005;25(5):380-384.
-
185.
Lister P.D., Sanders W.E., Jr., Sanders C.C. Cefepime-Aztreonam: a Unique Double beta-Lactam Combination for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1998;42(7):1610-1619.
-
186.
Krezdorn J., Adams S., Coote P.J. A Galleria mellonella infection model reveals double and triple antibiotic combination therapies with enhanced efficacy versus a multidrug-resistant strain of Pseudomonas aeruginosa. J Med Microbiol. 2014;63(Pt 7):945-955.
-
187.
Moya B., Barcelo I.M., Bhagwat S., et al. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “beta-Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-beta-LactamaseProducing High-Risk Clones. Antimicrob Agents Chemother. 2017;61(6):e02529-16.
-
188.
Drusano G.L., Bonomo R.A., Bahniuk N., et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(1):231-242.
-
189.
Thomas J.K., Forrest A., Bhavnani S.M., et al. Pharmacodynamic Evaluation of Factors Associated with the Development of Bacterial Resistance in Acutely Ill Patients during Therapy. Antimicrob Agents Chemother. 1998;42(3):521-527.
-
190.
Drusano G.L., Preston S.L., Fowler C., et al. Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis. 2004;189(9):1590-1597.
-
191.
Hansen G.T., Zhao X., Drlica K., Blondeau J.M. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents. 2006;27(2):120-124.
-
192.
Lister P.D., Wolter D.J., Wickman P.A., Reisbig M.D. Levofloxacin/ imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. J Antimicrob Chemother. 2006;57(5):999-1003.
-
193.
Lister P.D., Wolter D.J. Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. Clin Infect Dis. 2005;(40 Suppl 2):S105-S114.
-
194.
Louie A., Bied A., Fregeau C., et al. Impact of different carbapenems and regimens of administration on resistance emergence for three isogenic Pseudomonas aeruginosa strains with differing mechanisms of resistance. Antimicrob Agents Chemother. 2010;54(6):26382645.
-
195.
Zhanel G.G., Mayer M., Laing N., Adam H.J. Mutant Prevention Concentrations of Levofloxacin Alone and in Combination with Azithromycin, Ceftazidime, Colistin (Polymyxin E), Meropenem, Piperacillin-Tazobactam, and Tobramycin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):2228-2230.
-
196.
Zhanel G.G., Vashisht V., Tam E.D., Hoban D.J., Karlowsky J.A. Mutant prevention concentrations of doripenem and meropenem alone and in combination with colistin (polimixin E), levofloxacin and tobramycin in Pseudomonas aeruginosa. Can J Infect Dis Med Microbiol. 2009;20(suppl-A):67A-71A.
-
197.
Fish D.N., Choi M.K., Jung R. Synergic activity of cephalosporins plus fluoroquinolones against Pseudomonas aeruginosa with resistance to one or both drugs. J Antimicrob Chemother. 2002;50(6):1045-1049.
-
198.
Vestergaard M., Paulander W., Marvig R.L., et al. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int J Antimicrobi Agents. 2016;47(1):48-55.
-
199.
Solomkin J.S., Reinhart H.H., Dellinger E.P., et al. Results of a randomized trial comparing sequential intravenous/oral treatment with ciprofloxacin plus metronidazole to imipenem/cilastatin for intraabdominal infections. The Intra-Abdominal Infection Study Group. Ann Surg. 1996;223(3):303-315.
-
200.
Heyland D.K., Dodek P., Muscedere J., Day A., Cook D. Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med. 2008;36(3):737-744.
-
201.
Al-Hasan M.N., Wilson J.W., Lahr B.D., et al. Beta-lactam and fluoroquinolone combination antibiotic therapy for bacteremia caused by gram-negative bacilli. Antimicrob Agents Chemother. 2009;53(4):1386-1394.
-
202.
Bulitta J.B., Yang J.C., Yohonn L., et al. Attenuation of Colistin Bactericidal Activity by High Inoculum of Pseudomonas aeruginosa Characterized by a New Mechanism-Based Population Pharmacodynamic Model. Antimicrob Agents Chemother. 2010;54(5):2051-2062.
-
203.
Tam V.H., Schilling A.N., Vo G., et al. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(9):3624-3630.
-
204.
Dudhani R.V., Turnidge J.D., Coulthard K., et al. Elucidation of the Pharmacokinetic/Pharmacodynamic Determinant of Colistin Activity against Pseudomonas aeruginosa in Murine Thigh and Lung Infection Models. Antimicrob Agents Chemother. 2010;54(3):1117-1124.
-
205.
Ly N.S., Bulitta J.B., Rao G.G., et al. Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance. J Antimicrob Chemother. 2015;70(5):1434-1442.
-
206.
Aoki N., Tateda K., Kikuchi Y., et al. Efficacy of colistin combination therapy in a mouse model of pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. J Antimicrob Chemother. 2009;63(3):534542.
-
207.
Gunderson B.W., Ibrahim K.H., Hovde L.B., et al. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2003;47(3):905-909.
-
208.
Rynn C., Wootton M., Bowker K.E., Alan H.H., Reeves D.S. In vitro assessment of colistin’s antipseudomonal antimicrobial interactions with other antibiotics. Clin Microbiol Infect. 1999;5(1):32-36.
-
209.
Giamarellos-Bourboulis E.J., Sambatakou H., Galani I., Giamarellou H. In vitro interaction of colistin and rifampin on multidrug-resistant Pseudomonas aeruginosa. J Chemother. 2003;15(3):235-238.
-
210.
Zusman O., Avni T., Leibovici L., et al. Systematic Review and Meta-Analysis of In Vitro Synergy of Polymyxins and Carbapenems. Antimicrob Agents Chemother. 2013;57(10):5104-5111.
-
211.
Lenhard J.R., Nation R.L., Tsuji BT. Synergistic combinations of polymyxins. Int J Antimicrob Agents. 2016;48(6):607-613.
-
212.
Sandri A.M., Landersdorfer C.B., Jacob J., et al. Population Pharmacokinetics of Intravenous Polymyxin B in Critically Ill Patients: Implications for Selection of Dosage Regimens. Clin Infect Dis. 2013;57(4):524-531.
-
213.
Garonzik S.M., Li J., Thamlikitkul V., et al. Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients. Antimicrob Agents Chemother. 2011;55(7):3284-3294.
-
214.
Benattar Y.D., Omar M., Zusman O, et al. The Effectiveness and Safety of High-Dose Colistin: Prospective Cohort Study. Clin Infect Dis. 2016;63(12):1605-1612.
-
215.
Pogue J.M., Ortwine J.K., Kaye K.S. Editorial Commentary: Colistin Dosing: Does the Fun Ever Start? Clin Infect Dis. 2016;63(12):16131614.
-
216.
Imberti R.M., Cusato M.P., Villani P.B., et al. Steady-State Pharmacokinetics and BAL Concentration of Colistin in Critically Ill Patients After IV Colistin Methanesulfonate Administration. Chest. 2010;138(6):1333-1339.
-
217.
Huang J.X., Blaskovich M.A.T., Pelingon R., et al. Mucin Binding Reduces Colistin Antimicrobial Activity. Antimicrob Agents Chemother. 2015;59(10):5925-5931.
-
218.
Markantonis S.L., Markou N., Fousteri M., et al. Penetration of Colistin into Cerebrospinal Fluid. Antimicrob Agents Chemother. 2009;53(11):4907-4910.
-
219.
Walsh C.C., McIntosh M.P., Peleg A.Y., Kirkpatrick C.M., Bergen P.J. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 2015;70(11):3042-3050.
-
220.
Rodriguez-Rojas A., Couce A., Blazquez J. Frequency of spontaneous resistance to fosfomycin combined with different antibiotics in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(11):4948-4949.
-
221.
Díez-Aguilar M., Morosini M.A., Tedim A.P., et al. Antimicrobial Activity of Fosfomycin-Tobramycin Combination against Pseudomonas aeruginosa Isolates Assessed by Time-Kill Assays and Mutant Prevention Concentrations. Antimicrob Agents Chemother. 2015;59(10):60396045.
-
222.
Montgomery A.B., Rhomberg P.R., Abuan T., Walters K.A., Flamm RK. Amikacin-Fosfomycin at a Five-to-Two Ratio: Characterization of Mutation Rates in Microbial Strains Causing Ventilator-Associated Pneumonia and Interactions with Commonly Used Antibiotics. Antimicrob Agents Chemother. 2014;58(7):3708-3713.
-
223.
Montgomery A.B., Rhomberg P.R., Abuan T., Walters K.A., Flamm R.K. Potentiation Effects of Amikacin and Fosfomycin against Selected Amikacin-Nonsusceptible Gram-Negative Respiratory Tract Pathogens. Antimicrob Agents Chemother. 2014;58(7):37143719.
-
224.
Gómez-Garcés J.L., Gil-Romero Y., Sanz-Rodríguez N., Muñoz-Paraíso C., Regodón-Domínguez M. Actividad in-vitro de fosfomicina, sola o en combinaciones, frente a aislamientos clínicos de Pseudomonas aeruginosa resistentes a carbapenémicos. Enf Infecc Microbiol Clín. 2016;34(4):228-231.
-
225.
Yamada S., Hyo Y., Ohmori S., Ohuchi M. Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of Pseudomonas aeruginosa. Chemotherapy. 2007;53(3):202-209.
-
226.
Asuphon O., Montakantikul P., Houngsaitong J., Kiratisin P., Sonthisombat P. Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/ pharmacodynamic (PK/PD) simulation. Int J Infect Dis. 2016;50: 23-29.
-
227.
Chin N.X., Neu N.M., Neu H.C. Synergy of fosfomycin with betalactam antibiotics against staphylococci and aerobic gram-negative bacilli. Drugs Exp Clin Res. 1986;12(12):943-947.
-
228.
Zeitlinger M.A., Marsik C., Georgopoulos A., et al. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. Int J Antimicrob Agents. 2003;21(6):562-567.
-
229.
Okazaki M., Suzuki K., Asano N., et al. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J Infect Chemother. 2002;8(1):37-42.
-
230.
Mirakhur A., Gallagher M.J., Ledson M.J., Hart C.A., Walshaw M.J. Fosfomycin therapy for multiresistant Pseudomonas aeruginosa in cystic fibrosis. J Cyst Fibros. 2003;2(1):19-24.
-
231.
Falagas M.E., Kastoris A.C., Karageorgopoulos D.E., Rafailidis P.I. Fosfomycin for the treatment of infections caused by multidrugresistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents. 2009;34(2):111-120.
-
232.
Tunkel A.R., Hasbun R., Bhimraj A., et al. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis. Clin Infect Dis. 2017;64:e34-e65.
-
233.
Remes F., Tomas R., Jindrak V., Vanis V., Setlik M. Intraventricular and lumbar intrathecal administration of antibiotics in postneurosurgical patients with meningitis and/or ventriculitis in a serious clinical state. J Neurosurg. 2013;119(6):1596-1602.
-
234.
Pai S., Bedford L., Ruramayi R., et al. Pseudomonas aeruginosa meningitis/ventriculitis in a UK tertiary referral hospital. QJM. 2016;109(2):85-89.
-
235.
Gilbert B., Morrison C. Evaluation of intraventricular colistin utilization: A case series. J Crit Care. 2017;40:161-163.
-
236.
Plasencia V., Borrell N., Macia M.D., et al. Influence of High Mutation Rates on the Mechanisms and Dynamics of In Vitro and In Vivo Resistance Development to Single or Combined Antipseudomonal Agents. Antimicrob Agents Chemother. 2007;51(7):2574-2581.
-
237.
Tato M., Garcia-Castillo M., Bofarull A.M., Canton R. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa and Enterobacteriaceae recovered in Spanish medical centres: Results of the CENIT study. Int J Antimicrob Agents. 2015;46:502-510.