Abstract
The resistance of the systemic Candida infections causative agents is a cornerstone of the selection of an effective therapy. But if before the problem was limited to resistance to azole antifungals, then by now we have enough data about cases of treatment failures with echinocandins, which for today are the drugs of choice for treating most clinical form of invasive candidiasis. The largest number of reports connected to such problematic species as C. glabrata, frequency allocation is a steady tendency to growth, and which has a number of unique structural and functional features. The underlying mechanism of the development of resistance of Candida species in general, and C. glabrata in particular, are acquired, in most cases, after long-term therapy, mutations in the FKS1/FKS2 genes, which are responsible for the activity of the target for echinocandins –β-1,3-D-glucansynthase enzyme. The problems associated with the detection of such strains by conventional methods for determining the sensitivity, led in particular to the revision of interpretive criteria applied to existing protocols. Evidence to date information about the types of mutational changes could potentially help in the future in the development of genetic methods for detecting certain changes in the genes that can predict the likely ineffectiveness of echinocandins therapy. Identification of C. glabrata strains resistant to echinocandins is an important clinical problem in terms of the choice of therapy, and therefore we need to develop new approaches to therapy, including searching for new targets of action of drugs. In the absence of those now, the policy for antifungals use in the hospital should help to reduce unnecessary administration of echinocandins for therapeutic or prophylactic purposes — the main promoter of the emergence of resistant Candida strains.
Institute of Antimicrobial Chemotherapy, Smolensk, Russia
-
1.
Diekema D., Arbefeville S., Boyken L., et al. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Micr Infec Dis 2012; 73:45-8.
-
2.
Cleveland A., Harrison L., Farley M., et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008- 2013: results from population-based surveillance. PLoS One 2015; 10:e0120452.
-
3.
Pfaller M., Andes D., Diekema D., et al. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004- 2008. PLoS One 2014; 9(7):e101510.
-
4.
Anderson H. Yeast-like fungi of the human intestinal tract. J Infect Dis 1917; 21:341-86.
-
5.
Bolotin-Fukuhara M., Fairhead C. Candida glabrata: a deadly companion? Yeast Chichester Engl 2014; 31:279-88.
-
6.
Plaut A. Human infection with Cryptococcus glabratus; report of case involving uterus and fallopian tube. Am J Clin Pathol 1950; 20:377-80.
-
7.
Grimley P., Wright L., Jennings A. Torulopsis glabrata infection in man. Am J Clin Pathol 1965; 43:216-23.
-
8.
Hazen K. New and emerging yeast pathogens. Clin Microbiol Rev 1995; 8:462-78.
-
9.
Kurtzman C., Robnett C. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998; 73:331-71.
-
10.
Mayer F., Wilson D., Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013; 4:119-28.
-
11.
Roetzer A., Gratz N., Kovarik P., et al. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2010; 12:199-216.
-
12.
Cormack B., Ghori N., Falkow S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 1999; 285:578-82.
-
13.
Roetzer A., Gabaldon T., Schuller C. From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 2011; 314:1-9.
-
14.
Ghannoum M., Jurevic R., Mukherjee P., et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 2010; 6:e1000713.
-
15.
Malani A., Psarros G., Malani P., et al. Is age a risk factor for Candida glabrata colonisation? Mycoses 2011; 54:531-7.
-
16.
Pfaller M., Messer S., Hollis R., et al. Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J Clin Microbiol 2009; 47(10):3185-90.
-
17.
Pfaller M., Diekema D., Gibbs D., et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 2010; 48:1366-77.
-
18.
Lyon G., Karatela S., Sunay S., Adiri Y. Antifungal susceptibility testing of Candida isolates from the Candida surveillance study. J Clin Microbiol 2010; 48:1270-5.
-
19.
Lortholary O., Desnos-Ollivier M., Sitbon K., et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother 2011; 55:532-8.
-
20.
Pappas P., Kauffman C., Andes D., et al. Clinical practice guidelines for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62(4):e1-e50.
-
21.
Cornely O., Bassetti M., Calandra T., et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 2012; 18 Suppl 7:19-37.
-
22.
Ullmann A., Akova M., Herbrecht R., et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 2012; 18 Suppl 7:53-67.
-
23.
Lockhart S., Iqbal N., Cleveland A., et al. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol 2012; 50:3435-42.
-
24.
Diekema D. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Candida species to anidulafungin, caspofungin, and micafungin. J Clin Microbiol 2011; 49:624-9.
-
25.
Cleary J., Garcia-Effron G., Chapman S., Perlin D. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob Agents Chemother 2008; 52:2263-5.
-
26.
Thompson G., Wiederhold N., Vallor A., et al. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother 2008; 52:3783-5.
-
27.
Pfeiffer C., Garcia-Effron G., Zaas A., et al. Breakthrough invasive candidiasis in patients on micafungin. J Clin Microbiol 2010; 48:2373-80.
-
28.
Durán-Valle M., Gago S., Gómez-López A., et al. Recurrent episodes of candidemia due to Candida glabrata with a mutation in hot spot 1 of the FKS2 gene developed after prolonged therapy with caspofungin. Antimicrob Agents Chemother 2012; 56(6):3417-9.
-
29.
Chapeland-Leclerc F., Hennequin C., Papon N., et al. Acquisition of flucytosine, azole, and caspofungin resistance in Candida glabrata bloodstream isolates serially obtained from a hematopoietic stem cell transplant recipient. Antimicrob. Agents Chemother 2012; 54:1360-2.
-
30.
Shields R., Nguyen M., Press E., et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother 2012; 56:4862-9.
-
31.
Shields R., Nguyen M., Press E., Updike C., Clancy C. Caspofungin MICs correlate with treatment outcomes among patients with Candida glabrata invasive candidiasis and prior echinocandin exposure. Antimicrob Agents Chemother 2013; 57(8):3528-35.
-
32.
Alexander B., Johnson M., Pfeiffer C., et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 2013; 56(12):1724-32.
-
33.
Lewis J. 2nd, Wiederhold N., Wickes B., Patterson T., Jorgensen J. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother 2013; 57(9):4559-61.
-
34.
Saraya T., Tanabe K., Araki K., et al. Breakthrough invasive Candida glabrata in patients on micafungin: a novel FKS gene conversion correlated with sequential elevation of MIC. J Clin Microbiol 2014; 52(7):2709-12.
-
35.
Bizerra F., Jimenez-Ortigosa C., Souza A., et al. Breakthrough candidemia due to multidrug-resistant Candida glabrata during prophylaxis with a low dose of micafungin. Antimicrob Agents Chemother 2014; 58(4):2438-40.
-
36.
Beyda N., John J., Kilic A., et al. FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin Infect Dis 2014; 59(6):819-25.
-
37.
Park S., Kelly R., Kahn J., et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 2005; 49:3264-73.
-
38.
Perlin D. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 2007; 10:121-30.
-
39.
Garcia-Effron G., Chua D., Tomada J., et al. Novel FKS mutations associated with echinocandin resistance in Candida species. Antimicrob Agents Chemother 2010; 54:2225-7.
-
40.
Pfaller M., Boyken L., Hollis R., et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol 2008; 46(1):150-6.
-
41.
Pfaller M., Castanheira M., Messer S., Moet G., Jones R. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn Microbiol Infect Dis 2011; 69(1):45-50.
-
42.
Pfaller M., Rhomberg P., Messer S., Jones R., Castanheira M. Isavuconazole, micafungin, and 8 comparator antifungal agents’ susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values. Diagn Microbiol Infect Dis 2015; 82(4):303-13.
-
43.
Xiao M., Fan X., Chen S., et al. Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance. J Antimicrob Chemother 2015; 70(3):802-10.
-
44.
Pham C., Iqbal N., Bolden C., et al. Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother 2014; 58(8):4690-6.
-
45.
Castanheira M., Woosley L., Messer S., et al. Frequency of fks mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates. Antimicrob Agents Chemother 2014; 58:577-80.
-
46.
Pham C., Bolden C., Kuykendall R., Lockhart S. Development of a Luminex-based multiplex assay for detection of mutations conferring resistance to echinocandins in Candida glabrata. J Clin Microbiol 2014; 52:790-5.
-
47.
Klimko N., Vasilyeva N., Chernenkaya T., et al. Invasive candidiasis in intensive care units: results of prospective multicenter study in Russia. Proceedings of the 25th ECCMID, Copenhagen, April 25-28, 2015. Abstr. EV0945.
-
48.
Gracheva A., Kliasova G., Fedorova N., et al. In vitro activity of caspofungin against Candida spp. isolated from blood in hematological and ICU patients in Russia. Proceedings of 50th ICAAC, Boston, USA, 2010. M-385.
-
49.
Perlin D. Current perspectives on echinocandin class drugs. Future Microbiol 2011; 6:441-57.
-
50.
Arendrup M., Perlin D. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis 2014; 27:484-92.
-
51.
Garcia-Effron G., Park S., Perlin D. Correlating echinocandin MIC and kinetic inhibition of FKS1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 2009; 53:112-22.
-
52.
Garcia-Effron G., Lee S., Park S., et al. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 2009; 53:3690-9.
-
53.
Garcia-Effron G., Katiyar S., Park S., et al. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother 2008; 52:2305-12.
-
54.
Slater J., Howard S., Sharp A., et al. Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in FKS1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother 2011; 55:3075-83.
-
55.
Arendrup M., Perlin D., Jensen R., et al. Differential in vivo activities of anidulafungin, caspofungin, and micafungin against Candida glabrata isolates with and without FKS resistance mutations. Antimicrob Agents Chemother 2012; 56:2435-42.
-
56.
Lepak A., Castanheira M., Diekema D., et al. Optimizing echinocandin dosing and susceptibility breakpoint determination via in vivo pharmacodynamics evaluation against Candida glabrata with and without FKS mutations. Antimicrob Agents Chemother 2012; 56:5875-82.
-
57.
Kuse E., Chetchotisakd P., da Cunha C., et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised doubleblind trial. Lancet 2007; 369:1519-27.
-
58.
Mora-Duarte J., Betts R., Rotstein C., et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 2002; 347:2020-9.
-
59.
Reboli A., Rotstein C., Pappas P., et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 2007; 356:2472-82.
-
60.
Cowen L., Sanglard D., Howard S., Rogers P., Perlin D. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 2014; 5:pii:a019752.
-
61.
Kelly S., Lamb D., Kelly D., et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 1997; 400:80-2.
-
62.
Johnson M., Katiyar S., Edlind T. A new Fks hotspot for acquired echinocandin resistance in yeast, and its contribution to intrinsic resistance of Scedosporium species. Antimicrob Agents Chemother 2011; 55:3774-81.
-
63.
Katiyar S., Edlind T. Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2009; 53:1772-8.
-
64.
Slater J., Howard S., Sharp A., et al. Disseminated candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother 2011; 55:3075-83.
-
65.
Wiederhold N., Najvar L., Bocanegra R., Kirkpatrick W., Patterson T. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother 2011; 55:3254-60.
-
66.
Katiyar S., Alastruey-Izquierdo A., Healey K., Johnson M., Perlin D., Edlind T. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother 2012; 56:6304-9.
-
67.
Eng W., Faucette L., McLaughlin M., et al. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene 1994; 151:61-71.
-
68.
Li H., Chen Z., Zhang C., et al. Resistance reversal induced by a combination of fluconazole and tacrolimus (FK506) in Candida glabrata. J Med Microbiol 2015; 64(Pt 1):44-52.
-
69.
Castanheira M., Woosley L., Diekema D., et al. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother 2010; 54:2655-9.
-
70.
Shields R., Nguyen M., Press E., et al. Rate of FKS mutations among consecutive Candida isolates causing bloodstream infection. Antimicrob Agents Chemother 2015; 59(12):7465-70.
-
71.
Guinea J., Zaragoza O., Escribano P., et al. Molecular identification and antifungal susceptibility of yeast isolates causing fungemia collected in a population-based study in Spain in 2010 and 2011. Antimicrob Agents Chemother 2014; 58:1529-37.
-
72.
Jensen R., Justesen U., Rewes A., et al. Echinocandin failure case due to a previously unreported FKS1 mutation in Candida krusei. Antimicrob Agents Chemother 2014; 58:3550-2.
-
73.
Prigitano A., Esposito M., Cogliati M., et al. Acquired echinocandin resistance in a Candida krusei blood isolate confirmed by mutations in the fks1 gene. New Microbiol 2014; 37:237-40.
-
74.
Jensen R., Johansen H., Arendrup M. Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis. Antimicrob Agents Chemother 2013; 57:614-7.
-
75.
Garcia-Effron G., Kontoyiannis D., Lewis R., et al. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother 2008; 52:4181-3.
-
76.
Shields R., Nguyen M., Press E., et al. Abdominal candidiasis is a hidden reservoir of echinocandin resistance. Antimicrob Agents Chemother 2014; 58:7601-5.
-
77.
Pfaller M., Castanheira M., Lockhart S., et al. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 2012; 50:1199-203.
-
78.
Zimbeck A., Iqbal N., Ahlquist A., et al. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob. Agents Chemother 2012; 54:5042-7.
-
79.
Perlin D. Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs 2014; 74:1573-85.
-
80.
Available from: www.clsi.org.
-
81.
Available from: www.eucast.org.
-
82.
Pfaller M., Espinel-Ingroff A., Bustamante B., et al. Multicenter study of anidulafungin and micafungin MIC distributions and epidemiological cutoff values for eight Candida species and the CLSI M27-A3 broth microdilution method. Antimicrob Agents Chemother 2014; 58:916-22.
-
83.
Pfaller M., Messer S., Woosley L., Jones R., Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol 2013; 51:2571-81.
-
84.
Espinel-Ingroff A., Arendrup M., Pfaller M., et al. Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother 2013; 57(12):5836-42.
-
85.
Pfaller M., Diekema D., Ostrosky-Zeichner L., et al. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol 2008; 46:2620-9.
-
86.
Andes D., Diekema D., Pfaller M., et al. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother 2010; 54:2497-506.
-
87.
Pfaller M., Diekema D., Andes D., et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 2011; 14:164-76.
-
88.
Arendrup M., Cuenca-Estrella M., Lass-Florl C., Hope W. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat 2013; 16:81-95.
-
89.
Arendrup M., Rodriguez-Tudela J., Lass-Florl C., et al. EUCAST technical note on anidulafungin. Clin Microbiol Infect 2011; 17:E18-20.
-
90.
Ben-Ami R., Hilerowicz Y., Novikov A., Giladi M. The impact of new epidemiological cutoff values on Candida glabrata resistance rates and concordance between testing methods. Diagn Microbiol Infect Dis 2014; 79:209-13.
-
91.
Pfaller M., Messer S., Diekema D., Jones R., Castanheira M. Use of micafungin as a surrogate marker to predict susceptibility and resistance to caspofungin among 3,764 clinical isolates of Candida by use of CLSI methods and interpretive criteria. J Clin Microbiol 2014; 52:108-14.
-
92.
Pfaller M., Diekema D., Jones R., Castanheira M. Use of anidulafungin as a surrogate marker to predict susceptibility and resistance to caspofungin among 4,290 clinical isolates of Candida by using CLSI methods and interpretive criteria. J Clin Microbiol 2014; 52:3223-9.
-
93.
Eschenauer G., Nguyen M., Shoham S., et al. Real-world experience with echinocandin MICs against Candida species in a multicenter study of hospitals that routinely perform susceptibility testing of bloodstream isolates. Antimicrob Agents Chemother 2014; 58:1897-906.
-
94.
Pfaller M., Diekema D., Procop G., et al. Multicenter evaluation of the new Vitek 2 yeast susceptibility test using new CLSI clinical breakpoints for fluconazole. J Clin Microbiol 2014; 52:2126-30.
-
95.
Arendrup M., Pfaller M. Caspofungin Etest susceptibility testing of Candida species: risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob Agents Chemother 2012; 56:3965-8.
-
96.
Pfaller M., Chaturvedi V., Diekema D., et al. Comparison of the Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility testing of the echinocandins against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis 2012; 73:365-8.
-
97.
Bourgeois N., Laurens C., Bertout S., et al. Assessment of caspofungin susceptibility of Candida glabrata by the Etest®, CLSI, and EUCAST methods, and detection of FKS1 and FKS2 mutations. Eur J Clin Microbiol Infect Dis 2014; 33(7):1247-52.
-
98.
Astvad K., Perlin D., Johansen H., Jensen R., Arendrup M. Evaluation of caspofungin susceptibility testing by the new Vitek 2 AST-YS06 yeast card using a unique collection of FKS wild-type and hot spot mutant isolates, including the five most common candida species. Antimicrob Agents Chemother 2013; 57(1):177-82.
-
99.
Farmakiotis D., Tarrand J., Kontoyiannis D. Drugresistant Candida glabrata infection in cancer patients. Emerg Infect Dis 2014; 20:1833-40.
-
100.
Wang E., Farmakiotis D., Yang D., et al. The everevolving landscape of candidaemia in patients with acute leukaemia: nonsusceptibility to caspofungin and multidrug resistance are associated with increased mortality. J Antimicrob Chemother 2015; 70:2362-8.
-
101.
Shields R., Nguyen M., Press E., et al. Anidulafungin and micafungin minimum inhibitory concentration breakpoints are superior to caspofungin for identifying FKS mutant Candida glabrata and echinocandin resistance. Antimicrob Agents Chemother 2013; 57:6361-5.
-
102.
Fekkar A., Dannaoui E., Meyer I., et al. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis 2014; 33:1489-96.
-
103.
Fekkar A., Meyer I., Brossas J., et al. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob Agents Chemother 2013; 57:2380-2.
-
104.
Ben-Ami R., Garcia-Effron G., Lewis R., et al. The fitness and virulence cost of fks1 mutations causing echinocandin-resistance in Candida albicans. J Infect Dis 2011; 204:626-35.
-
105.
Klotz U., Schmidt D., Willinger B., et al. Echinocandin resistance and population structure of invasive Candida glabrata isolates from two university hospitals in Germany and Austria. Mycoses 2016 Jan 25. [Epub ahead of print]
-
106.
Magill S., Swoboda S., Shields C., et al. The epidemiology of Candida colonization and invasive candidiasis in a surgical intensive care unit where fluconazole prophylaxis is utilized: follow-up to a randomized clinical trial. Ann Surg 2009; 249:657-65.
-
107.
Miranda L., van der Heijden I., Costa S., et al. Candida colonization as a source for candidaemia. J Hosp Infect 2009; 72:9-16.
-
108.
Voss A., Hollis R., Pfaller M., Wenzel R., Doebbeling B. Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J Clin Microbiol 1994; 32:975-80.
-
109.
Richet H., Andremont A., Tancrede C., Pico J., Jarvis W. Risk factors for candidemia in patients with acute lymphocytic leukemia. Rev Infect Dis 1991; 13:211-5.
-
110.
Harriott M., Noverr M. Importance of Candidabacterial polymicrobial biofilms in disease. Trends Microbiol 2011; 19:557-63.
-
111.
Mitchell K., Taff H., Cuevas M., et al. Role of matrix beta-1,3-glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob Agents Chemother 2013; 57:1918-20.
-
112.
Scott L. Micafungin: a review of its use in the prophylaxis and treatment of invasive Candida infections. Drugs 2012; 72:2141-65.
-
113.
de la Torre P., Reboli A. Micafungin: an evidence-based review of its place in therapy. Core Evid 2014; 9:27-39.
-
114.
Chou L., Lewis R., Ippoliti C., Champlin R., Kontoyiannis D. Caspofungin as primary antifungal prophylaxis in stem cell transplant recipients. Pharmacotherapy 2007; 27:1644-50.
-
115.
Mattiuzzi G., Alvarado G., Giles F., et al. Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies. Antimicrob Agents Chemother 2006; 50:143-7.
-
116.
Ziakas P., Kourbeti I., Mylonakis E. Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis. Clin Ther 2014; 36:292-306.e1.
-
117.
Ruggero M., Topal J. Development of echinocandinresistant Candida albicans candidemia following brief prophylactic exposure to micafungin therapy. Transpl Infect Dis 2014; 16:469-72.
-
118.
Ferrari S., Ischer F., Calabrese D., et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathol 2009; 5:e1000268.
-
119.
Muller H., Thierry A., Coppee J., et al. Genomic polymorphism in the population of Candida glabrata: gene copy-number variation and chromosomal translocations. Fungal Genet Biol 2009; 46:264-76.
-
120.
Krogh-Madsen M., Arendrup M., Heslet L., Knudsen J. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis 2006; 42:938-44.
-
121.
Hull C., Parker J., Bader O., et al. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B. Antimicrob Agents Chemother 2012; 56:4223-32.
-
122.
Khan Z., Ahmad S., Al-Obaid I., et al. Emergence of resistance to amphotericin B and triazoles in Candida glabrata vaginal isolates in a case of recurrent vaginitis. J Chemother 2008; 20:488-91.
-
123.
Malani A., Hmoud J., Chiu L., et al. Candida glabrata fungemia: experience in a tertiary care center. Clin Infect Dis 2005; 41:975-81.
-
124.
Pfaller M., Diekema D., Jones R., Messer S., Hollis R. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J Clin Microbiol 2002; 40:852-6.
-
125.
Castanheira M., Messer S., Jones R., Farrell D., Pfaller M. Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeast and moulds collected from invasive infections. Int J Antimicrob Agents 2014; 44(4):320-6.
-
126.
Andes D., Reynolds D., Van Wart S., et al. Clinical pharmacodynamic index identification for micafungin in esophageal candidiasis: dosing strategy optimization. Antimicrob Agents Chemother 2013; 57(11):5714-6.
-
127.
Gumbo T., Drusano G., Liu W., et al. Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis in mice with persistent neutropenia. Antimicrob Agents Chemother 2007; 51(3):968-74.
-
128.
Smith P., Walsh T., Hope W., et al. Pharmacokinetics of an elevated dosage of micafungin in premature neonates. Pediatr Infect Dis J 2009; 28(5):412-5.
-
129.
Domán M., Kovács R., Perlin D., et al. Dose escalation studies with caspofungin against Candida glabrata. J Med Microbiol 2015; 64(9):998-1007.
-
130.
Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 2003; 52(1):11-7.
-
131.
Drlica K., Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis 2007; 44(5):681-8.
-
132.
Mitsuyama J., Nomura N., Hashimoto K., et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2008; 52(4):1318-24.
-
133.
Wiederhold N., Najvar L., Fothergill A., et al. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata. J Antimicrob Chemother 2016; 71(3):692-5.
-
134.
Available from: http://www.toyama-chemical.co.jp/.
-
135.
Miyazaki M., Horii T., Hata K., et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 2011; 55(10):4652-8.
-
136.
Wiederhold N., Najvar L., Fothergill A., et al. The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans. Antimicrob Agents Chemother 2015; 59(1):690-2.
-
137.
Pfaller M., Rhomberg P., Messer S., Castanheira M. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis 2015; 81(4):259-63.
-
138.
Pfaller M., Messer S., Georgopapadakou N., et al. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 2009; 47(12):3797-804.
-
139.
ClinicalTrials.gov Identifier: NCT01497223. Available from: www.clinicaltrials.gov.
-
140.
Costa-de-Oliveira S., Marcos Miranda I., Silva R., et al. FKS2 mutations associated with decreased echinocandin susceptibility of Candida glabrata following anidulafungin therapy. Antimicrob Agents Chemother 2011; 55:1312-4.
-
141.
Inui S., Nakamura T., Tanabe K., et al. [A case of micafungin-hyposensitive Candida glabrata due to FKS2 gene mutation]. Kansenshogaku Zasshi 2011; 85(1):49-53.