Abstract
This paper represents a review of currently available data on microbial communities and biofilms as an important clinical problem. Structure and morphology of microbial biofilm as well as stages and mechanisms of its formation, and genes and factors involved are described in detail. Available data on signal molecules (autoinducers) promoting «quorum sensing» phenomenon are provided. Known and suggested mechanisms of survival in bacterial biofilms, defense from the environmental factors and increased antimicrobial resistance are also considered. The focus is made on potential targets which may be used to compromise biofilm formation or cause biofilm destruction. Studies to investigate effects of macrolides and combinations with other antibiotics on microbial biofilms are presented.
-
1.
Kaufmann S.H.E., Schaible U.E. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends in Microbiology 2005; 13:46975.
-
2.
Jensen P.Ø., Tolker-Nielsen T. Report from Eurobiofilms 2011. Future Microbiol 2011; 6:1237-45.
-
3.
Branda S.S., Vik S., Friedman L., Kolter R. Biofilms: the matrix revisited. Trends Microbiol 2005; 13:20-6.
-
4.
Spoering A.L., Gilmore M.S. Quorum sensing and DNA release in bacterial biofilms. Current Opinion in Microbiology 2006; 9:133-7.
-
5.
Mah T.F., O’Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001; 9:34-9.
-
6.
Leid J.G. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFNgamma-mediated macrophage killing. J Immunol 2005; 175:7512-8.
-
7.
Götz F. Staphylococcus and biofilms. Mol Microbiol 2002; 43:1367-78.
-
8.
O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Annl Rev Microbiol 2000; 54:4979.
-
9.
Prüss B.M. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bact 2006; 188:3731-9.
-
10.
Ren D. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 2004; 64:515-24.
-
11.
Beloin C. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 2004; 51:659-74.
-
12.
Schembri M., Kjaergaard K., Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003; 48:253-67.
-
13.
Waite R.D. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 2006; 7;162.
-
14.
Whiteley M. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001; 413:860-4.
-
15.
Ren D. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechn Bioeng 2004; 86:344-64.
-
16.
Stanley N.R. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 2003; 185:1951-7.
-
17.
Moorthy S., Watnick P.I. Identification of novel stagespecific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 2005; 57:1623-35.
-
18.
Beenken K.E. Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 2004; 186:4665-84.
-
19.
Cho K.H., Caparon M.G. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 2005; 57:1545-56.
-
20.
O’Grady N.P., Alexander M., Dellinger E.P., et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR. Recommendations and reports : мorbidity and mortality weekly report. Recommendations and reports. Centers for Disease Control 2002; 51(RR10):1-29.
-
21.
Watnick P., Kolter R. Biofilm, city of microbes. J Bacteriol 2000; 182:2675-9.
-
22.
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318-22.
-
23.
Zhu J. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proс Nat Acad of Sci USA 2002; 99:3129-34.
-
24.
Irie Y., Mattoo S., Yuk M.H. The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. J Bacteriol 2004; 186:5692-8.
-
25.
Kuchma S.L., Connolly J.P., O’Toole G.A. A threecomponent regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 2005; 187:1441-54.
-
26.
Compans R.W., Cooper M.D. Current Topics in Microbiology and Immunology. Series Editors. Vol. 322; Curr Top Microbiol Immunol.
-
27.
Picioreanu C., van Loosdrecht M.C., Heijnen J.J. Twodimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechn Bioeng 2001; 72:205-18.
-
28.
Barraud N., Hassett D., Hwang S., et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 2006; 188:7344-53.
-
29.
Barraud N., Hassett D., Hwang S., et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 2009; 191:733342.
-
30.
Huang C.T. Spatial patterns of alkaline phosphaase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environm Microbiol 1998; 64:1526-31.
-
31.
Jenal U., Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Ann Rev Genetics 2006; 40:385-407.
-
32.
Heidelberg J.F. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnol 2002; 20:1118-23.
-
33.
Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol mol biol rev: MMBR 2002; 66:373-95.
-
34.
Kaplan J.B. Antibiotic-induced biofilm formation. Int J Artificial Org 2011; 34:737-51.
-
35.
Fuqua W.C., Winans S.C., Greenberg E.P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators. J Bacteriol 1994; 176:269-75.
-
36.
McDougald D., Rice S.A., Kjelleberg S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chemi 2007; 387:445-53.
-
37.
Vendeville A. Making “sense” of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature reviews. Microbiology 2005; 3:383-96.
-
38.
Steinmoen H., Knutsen E., Håvarstein L.S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Nat Acad Sci USA 2002; 99:7681-6.
-
39.
Jesaitis A.J. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 2003; 171:4329-39.
-
40.
Davies D. Understanding biofilm resistance to antibacterial agents. Nature reviews. Drug Discovery 2003; 2:114-22.
-
41.
Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001; 45:999-1007.
-
42.
Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167-93.
-
43.
Høiby N., Frederiksen B., Pressler T. Eradication of early Pseudomonas aeruginosa infection. J of cystic fibrosis: official journal of the European Cystic Fibrosis Society 2005; 4(Suppl 2):49-54.
-
44.
Gibson R.L., Burns J.L., Ramsey B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Resp Crit Care Med 2003; 168:918-51.
-
45.
Chernish R.N., Aaron S.D. Approach to resistant gramnegative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opinion Pulm Med 2003; 9:509-15.
-
46.
Patel R. Biofilms and antimicrobial resistance. Clin Orthopaed Rel Res 2005; 437:41-7.
-
47.
Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135-8.
-
48.
Kaldalu N., Mei R., Lewis K. Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 2004; 48:890-6.
-
49.
Mah T.-F. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426:306-10.
-
50.
Bagge N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175-87.
-
51.
Wozniak D.J., Keyser R. Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 2004; 125 (Suppl.):62S-69S.
-
52.
Tré-Hardy M. Evaluation of long-term co-administration of tobramycin and clarithromycin in a mature biofilm model of cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 2009; 34:370-4.
-
53.
Tré-Hardy M., Nagant C., El Manssouri N., et al. Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model. Antimicrob Agents Chemother 2010; 54:4409-15.
-
54.
Kandemir O., Oztuna V., Milcan A. Clarithromycin destroys biofilms and enhances bactericidal agents in the treatment of Pseudomonas aeruginosa osteomyelitis. Clin Orthopaed Related Research 2005; (430):171-5.
-
55.
Yasuda H., Ajiki Y., Koga T., Kawada H., Yokota T. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 1993; 37:1749-55.
-
56.
Yasuda H. Ajiki Y., Koga T., Yokota T. Interaction between clarithromycin and biofilms formed by Staphylococcus epidermidis. Antimicrob Agents Chemother 1994; 38:138-41.