Abstract
Telavancin (TLV) is an investigational lipoglycopeptide with multiple mechanism of action. It exhibits rapid bactericidal activity against gram-positive bacteria, including methicillin-susceptible and -resistant, glycopeptide-intermediate and -resistant strains of Staphylococcus aureus. To predict the efficacies of TLV and vancomycin (VAN), the killing kinetics of two strains of S. aureus were exposed to in vitro simulated pharmacokinetics of once-daily TLV and twice-daily VAN given for five consecutive days. The simulated ratios of the 24-hour area under the curve (AUC24) to the MIC varied from 30-50 to 1700-3400 h. With both S. aureus ATCC 43300 and ATCC 700699 (Mu50), concentration-dependent reduction of the starting inoculum was observed at AUC24/MICs from 100 to 800 h, without further lowering the minimal numbers of surviving organisms at the larger AUC24/MICs (up to 1700 h with S. aureus ATCC 700699 and up to 3400 h with S. aureus ATCC 43300). At a given AUC24/MIC ratio, the cumulative anti-staphylococcal effects of TLV and VAN expressed by the area between the baseline and the time-kill curve (ABBC) were similar. However, TLV was more efficient against S. aureus ATCC 700699 than VAN at close to clinically attainable AUC24/MIC ratios (1700 h for TLV and 100 h for VAN). Neither TLV-, nor VAN-resistant mutants of S. aureus ATCC 700699 were enriched in the simulated treatments. Mutants of S. aureus ATCC 43300 resistant to 2× and 4×MIC of VAN were amplified at AUC24/MIC ratios of 60 and 120 h. There were no TLV-resistant mutants of S. aureus ATCC 43300 exposed to TLV. As ABBC exhibited more tight correlations with the AUC24/MIC than the conventional indices, it may be useful in the comparative pharmacodynamic studies with antibiotics.
-
1.
King A., Phillips I., Kaniga K. Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J Antimicrob Chemother 2004; 53:797-803.
-
2.
Pace J. L., Krause K., Johnston D., et al. In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47:3602-04.
-
3.
Shaw J. P., Seroogy J., Kaniga K., et al. Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob Agents Chemother 2005; 49:195-201.
-
4.
Higgins D. L., Chang R., Debabov D. V., et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:1127-34.
-
5.
Reyes N., Skinner R., Kaniga K., et al. Efficacy of telavancin (TD-6424), a rapidly bactericidal lipoglycopeptide with multiple mechanism of action, in a murine model of pneumonia induced by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2005, 49:4344-6.
-
6.
Madrigal A. G., Basuino L., Chambers H. F. Efficacy of telavancin in a rabbit model of aortic valve endocarditis due to methicillin-resistant Staphylococcus aureus or vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2005, 49:3163-5.
-
7.
Stuki A., Gerber P., Acosta F., et al. Efficacy of telavancin against penicillin-resistant pneumococci and Staphylococcus aureus in a rabbit meningitis model and determination of kinetic parameters. Antimicrob Agents Chemother 2006, 50:770-3.
-
8.
Reyes N., Skinner R., Benton B. M., et al. Efficacy of telavancin in a murine model of bacteraemia induced by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2006; 58:462-5.
-
9.
Stryjewski, M. E., O’Riordan W. D., Lau W. K., et al. and the FAST Investigator Group. Telavancin versus standard therapy for treatment of complicated gram-positive skin and soft tissue infections. Clin Infect Dis 2005; 40:1601-7.
-
10.
Stryjewski M. E., Chu V. H., O’Riordan W. D., et al. for the FAST 2 Investigator Group. Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 Study. Antimicrob Agents Chemother 2006; 50:862-7.
-
11.
Attwood R. J. and LaPlante, K. L. Telavancin: A novel lipoglycopeptide antimicrobial agent. Am J Health Syst Pharm 64: 2335-2348. National institute of Health. Comparison of telavancin and vancomycin for hospital-acquired pneumonia due to methicillin-resistant Staphylococcus aureus (ATTAIN 2) 2007.
-
12.
Leuthner K. D., Cheung C. M., Rybak M. J. Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 2006; 58:338-43.
-
13.
Odenholt I., Lowdin E., Cars O. Pharmacodynamic effects of telavancin against methicillin-resistant and methicillinsusceptible Staphylococcus aureus strains in the presence of human albumin or serum and in an in vitro kinetic model. Antimicrob Agents Chemother 2007; 51:3311-6.
-
14.
Lubenko I. Yu., Strukova E. N., Smirnova M. V., et al. Telavancin and vancomycin pharmacodynamics with Staphylococcus aureus in an in vitro dynamic model. J Antimicrob Chemother 2008; 62(5):1065-9.
-
15.
Zhao X., Drlica K. Restricting the selection of antibioticresistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis 2001; 33:147-6.
-
16.
Winter M. E. Vancomycin, In: Koda-Kimble M, Young L, ed. Basic Clinical Pharmacokinetics. Applied Therapeutics, Inc., Vancouver, WA, 1988; 357-71.
-
17.
Boeckh M., Lode H., Borner K., et al. Pharmacokinetics and serum bactericidal activity of vancomycin alone and in combination with ceftazidime in healthy volunteers. Antimicrob Agents Chemother 1988; 32:92-5.
-
18.
Healy D.P., Polk R.E., Garson M.L., et al. Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob Agents Chemother 1987; 31:393-97.
-
19.
Firsov A. A., Shevchenko A. A., Vostrov S. N., et al. Interand intra-quinolone predictors of antimicrobial effect in an in vitro dynamic model: new insight into a widely used concept. Antimicrob Agents Chemother 1998; 42:659-65.
-
20.
Firsov A. A., Savarino D., Ruble M., et al. Predictors of effect of ampicillin-sulbactam against TEM-1 beta-lactamase-producing Escherichia coli in an in vitro dynamic model: enzyme activity versus MIC. Antimicrob Agents Chemother 1996; 40:734-8.
-
21.
Фирсов А.А., Черных В. М. Фомина И. П. Принципы анализа кривых кинетики антимикробного эффекта в динамических системах, моделирующих фармакокинетические профили антибиотиков. Антибиотики 1987; 2:122-9
-
22.
Smirnova M.V., Lubenko I. Yu., Portnoy Y. A., et al. Concentration-response relationships as a basis for choice of the optimal endpoints of the antimicrobial effect: daptomycin and vancomycin pharmacodynamics with staphylococci in an in vitro dynamic model. Int J Antimicrob Agents 2007; 29:165-9.
-
23.
Firsov A. A., Zinner S. H., Vostrov S. N., et al. AUC/MIC relationships to different endpoints of the antimicrobial effect: multiple-dose in vitro simulations with moxifloxacin and levofloxacin. J Antimicrob Chemother 2002; 50:533-9
-
24.
Miró J. M., García-de-la-Mària C., Armero Y., et al. Efficacy of telavancin in the treatment of experimental endocarditis due to glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51:2373-7.